

Lecture Notes in Artificial Intelligence 4898
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Manuel Kolp Brian Henderson-Sellers
Haralambos Mouratidis Alessandro Garcia
Aditya Ghose Paolo Bresciani (Eds.)

Agent-Oriented
Information Systems IV

8th International Bi-Conference Workshop, AOIS 2006
Hakodate, Japan, May 9, 2006
and Luxembourg, Luxembourg, June 6, 2006
Revised Selected Papers

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Manuel Kolp
Université catholique de Louvain, IAG/ISYS, Louvain-la-Neuve, Belgium
E-mail: kolp@isys.ucl.ac.be

Brian Henderson-Sellers
University of Technology, Fac. of Information Technology, Sydney, Australia
E-mail: brian@it.uts.edu.au

Haralambos Mouratidis
University of East London, Sch. of Computing and Technology, Dagenham, England
E-mail: h.mouratidis@uel.ac.uk

Alessandro Garcia
Computing Department, InfoLab 21, Lancaster University, UK
E-mail: garciaa@comp.lancs.ac.uk

Aditya Ghose
University of Wollongong, Sch. of IT and Computer Science, Wollongong, Australia
E-mail: aditya@uow.edu.au

Paolo Bresciani
European Commission, DG Information Society and Media, Brussels, Belgium
E-mail: paolo.bresciani@ec.europa.eu

Library of Congress Control Number: 2008920060

CR Subject Classification (1998): I.2.11, H.4, H.3, H.5.2-3, C.2.4, I.2

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-77989-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-77989-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12226788 06/3180 5 4 3 2 1 0

Preface

This is the eighth year that the Agent-Oriented Information Systems (AOIS)
workshops have been held. Papers submitted to AOIS show an increase in quality and
maturity as agent technology is being increasingly seen as a viable alternative for
software and systems development. In AOIS, we focus on the application of agent
technology in information systems development and explore the potential for
facilitating the increased usage of agent technology in the creation of information
systems in the widest sense.

This year’s workshops were held in conjunction with two major, international
computing research conferences: the first, in May 2006, was affiliated with the AAMAS
conference in Hakadote, Japan and chaired by Garcia, Ghose and Kolp. The second was
held in conjunction with the international CAiSE conference held in Luxembourg (June
2006) and chaired by Bresciani, Henderson-Sellers and Mouratidis. (Details of all
preceding workshops are to be found at http:// www. aois. org.)

The best papers from both these meetings were identified and authors invited to
revise and extend their papers in light of the reviewers’ comments and feedback at the
workshop. Following submission to this compendium volume, another round of
reviews was undertaken resulting in what you can read here. These re-reviews were
undertaken by three members of the Programme Committee – we wish to thank both
the authors for undertaking the necessary revisions and the reviewers for this extra
call on their precious time.

We have grouped these papers loosely under four headings: Modelling; Methodologies;
Agent-Oriented Software Engineering; and Applications. These categories represent fairly
the breadth of current AOIS research as well as encompassing the papers presented at the
two AOIS workshops. We trust you will find the content of these selected and revised
papers to be of interest and utility.

October 2007 Manuel Kolp
Brian Henderson-Sellers
Haralambos Mouratidis

Alessandro Garcia
Aditya Ghose

Paolo Bresciani

Organization

Workshop Co-chairs

Manuel Kolp (Université catholique de Louvain, Belgium)
Brian Henderson-Sellers (University of Technology, Sydney, Australia)
Haralambos Mouratidis (University of East London, UK)
Alessandro Garcia (Lancaster University, UK)
Aditya Ghose (University of Wollongong, Australia)
Paolo Bresciani (European Commission, DG Information Society and Media,

Brussels, Belgium)

Steering Committee

Yves Lesperance (York University, Canada)
Gerd Wagner (Eindhoven University of Technology, The Netherlands)
Eric Yu (University of Toronto, Canada)
Paolo Giorgini (University of Trento, Italy)

Program Committee

Carole Bernon (University Paul Sabatier, Toulouse, France)
Brian Blake (Georgetown University Washington, DC, USA)
Paolo Bresciani (European Commission, Belgium)
Jaelson Castro (Federal University of Pernambuco, Brazil)
Luca Cernuzzi (Universitat Católica Nuestra Señora de la Asunción, Paraguay)
Massimo Cossentino (ICAR-CNR, Palermo, Italy)
Luiz Cysneiros (York University, Toronto)
John Debenham (University of Technology, Sydney)
Scott DeLoach (Kansas State University, USA)
Frank Dignum (University of Utrecht, The Netherlands)
Paolo Donzelli (University of Maryland, College Park, USA)
Bernard Espinasse (Domaine Universitaire de Saint-Jérôme, France)
Stéphane Faulkner (University of Namur, Belgium)
Behrouz Homayoun Far (University of Calgary, Canada)
Innes Ferguson (B2B Machines, USA)
Alessandro Garcia (Lancaster University, UK)
Chiara Ghidini (ITC-IRST, Italy)
Aditya Ghose (University of Wollongong, Australia)
Marie-Paule Gleizes (University Paul Sabatier, Toulouse, France)
Cesar Gonzalez-Perez (University of Technology, Sydney, Australia)
Giancarlo Guizzardi (University of Twente, The Netherlands)

VIII Organization

Igor Hawryszkiewycz (University of Technology, Sydney, Australia)
Brian Henderson-Sellers (University of Technology, Sydney, Australia)
Carlos Iglesias (Technical University of Madrid, Spain)
Manuel Kolp (Université catholique de Louvain, Belgium)
Daniel E. O’Leary (University of Southern California, USA)
Carlos de Lucena (Pontifícia Universidade Católica Rio, Brazil)
Graham Low (University of New South Wales, Australia)
Philippe Massonet (CETIC, Belgium)
Haris Mouratidis (University of East London, UK)
Jörg Mueller (Siemens, Germany)
Juan Pavón (Universidad Complutense Madrid, Spain)
Omer F. Rana (Cardiff University, UK)
Onn Shehory (IBM Haifa Labs, Israel)
Nick Szirbik (Technische Universiteit Eindhoven, The Netherlands)
Kuldar Taveter (University of Melbourne, Australia)
Quynh-Nhu Numi Tran (University of New South Wales, Australia)
Viviane Torres da Silva (Pontifícia Universidade Católica Rio, Brazil)
Michael Winikoff (RMIT, Australia)
Carson Woo (University of British Columbia, Canada)
Bin Yu (North Carolina State University, USA)
Amir Zeid (American University of Cairo, Egypt)
Zili Zhang (Deakin University, Australia)

Table of Contents

Modelling

Modeling MAS Properties with MAS-ML Dynamic Diagrams 1
Viviane Torres da Silva, Ricardo Choren, and Carlos J.P. de Lucena

Providing Contextual Norm Information in Open Multi-Agent
Systems . 19

Carolina Felićıssimo, Ricardo Choren, Jean-Pierre Briot,
Carlos J.P. de Lucena, Caroline Chopinaud, and
Amal El Fallah Seghrouchni

A Reputation Model Based on Testimonies . 37
José de S.P. Guedes, Viviane Torres da Silva, and
Carlos J.P. de Lucena

Methodologies

Towards Agent-Based Scenario Development for Strategic Decision
Support . 53

Maarten Mensonides, Bob Huisman, and Virginia Dignum

Preliminary Validation of MOBMAS (Ontology-Centric Agent Oriented
Methodology): Design of a Peer-to-Peer Information Sharing MAS 73

Quynh-Nhu Numi Tran, Ghassan Beydoun, Graham Low, and
Cesar Gonzalez-Perez

A Methodology to Bring MAS to Information Systems 90
Emmanuelle Grislin-Le Strugeon, Abdouroihamane Anli, and
Emmanuel Adam

On the Evaluation of Agent-Oriented Software Engineering
Methodologies: A Statistical Approach . 105

Abdel-Halim Hafez Elamy and Behrouz Far

Agent-Oriented Software Engineering

From Early to Late Requirements: A Goal-Based Approach 123
Alicia Mart́ınez, Oscar Pastor, John Mylopoulos, and Paolo Giorgini

A Formal Description Language for Multi-Agent Architectures 143
Stéphane Faulkner, Manuel Kolp, Yves Wautelet, and
Youssef Achbany

X Table of Contents

Comparing Three Formal Analysis Approaches of the Tropos Family . . . 164
Dominik Schmitz, Gerhard Lakemeyer, and Matthias Jarke

Integration of Aspects with i* Models . 183
Fernanda Alencar, Jaelson Castro, Ana Moreira, João Araújo,
Carla Silva, Ricardo Ramos, and John Mylopoulos

Applications

Enhancing Information Sharing Through Agents . 202
Marco Mari, Agostino Poggi, Michele Tomaiuolo, and Paola Turci

ToothAgent: A Multi-agent System for Virtual Communities Support . . . 212
Volha Bryl, Paolo Giorgini, and Stefano Fante

Author Index . 231

Modeling MAS Properties with MAS-ML

Dynamic Diagrams

Viviane Torres da Silva1, Ricardo Choren2, and Carlos J.P. de Lucena3

1 Dept Sist Informáticos - UCM, C/ Prof J.G. Santesmases s/n, Madrid 28040, Spain
viviane@fdi.ucm.es

2 Computer Engineering Dept - IME, Pça Gen Tibúrcio 80, RJ 22290-270, Brazil
choren@ime.eb.br

3 Computer Science Dept - PUC-Rio, Rua M. de S. Vicente 225, RJ 22453-900, Brazil
lucena@inf.puc-rio.br

Abstract. A crucial part of a multi-agent system (MAS) design is the
specification of agency properties. Traditional approaches to agent sys-
tems modeling use diagrams that focus on defining the set of structural
and interactive elements such as agents, organizations, actions and mes-
sages. Such approaches do not exhibit a proper notation to show agent
behavioral properties such as adaptation, mobility and concurrency. The
MAS-ML approach to designing agent systems proposed an extension to
UML 2.0 to provide a proper notation to model structural and dynamic
characteristics of a MAS. In this paper we enhance MAS-ML dynamic
diagrams, the extended sequence and activity diagrams, to describe the
basic guidelines to model behavioral properties and we show some ex-
amples of how these diagrams support the behavioral properties specifi-
cation, allowing a flexible and easier modeling of agency characteristics.

1 Introduction

Agents are goal-oriented entities that have beliefs, plans, actions and interac-
tions. To specify a MAS, a designer must elicit and describe these entities.
However, agents can have intrinsic properties such as adaptation, mobility and
concurrency. These properties are usually introduced later in the application de-
velopment, e.g. in the detailed design or in the implementation phases. There is
little support to describe these properties while modeling the application.

Currently, there has been an increasing effort to use UML to specify MAS (e.g.
[1,3,4,6,7,8]). Nevertheless, these efforts focus on the structural and interactive
aspects of the system. To overcome these limitations, we proposed the MAS-ML
[12] modeling language, which extended the UML metamodel to introduce new
notation elements and diagrams to model agent-specific features.

In two previous papers [13,14] we introduced the MAS-ML dynamic diagrams,
which are extensions to the UML 2.0 sequence and activity diagrams. This ex-
tension proposes the basic definitions of agent-oriented behavioral concepts, in-
cluding the creation of proper notation elements. These diagrams were discussed
and we showed the modeling language potential by examining some case studies.

M. Kolp et al. (Eds.): AOIS 2006, LNAI 4898, pp. 1–18, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

2 V.T. da Silva, R. Choren, and C.J.P. de Lucena

In this paper, we use these basic definitions to consider the problem of how
to clearly model some of the agents’ properties that may appear on a MAS
(goal-orientation, interaction, adaptation, distribution, mobility and concurrent
execution). Our goal is to show how the modeling language can be used to model
these properties on dynamic diagrams. We believe that providing a consistent
way to describe agent properties while modeling the system actions and pro-
tocols shall support an effective communication between stakeholders, increase
traceability and ease the design.

This paper is structured as follows. Sections 2 and 3 describe the MAS-ML
extended dynamic diagrams. Section 4 presents some sample scenarios that will
be used to show how MAS-ML dynamic diagrams support agent properties mod-
eling. Section 5 discusses how each property should be modeled using MAS-ML.
Section 6 describes the related work, and Section 7 concludes and presents some
ongoing work.

2 MAS-ML Extended Sequence Diagram

A sequence diagram shows how cooperating objects interact with each other by
emphasizing the time ordering of messages being sent and received [10]. This
diagram is used to identify objects, their interactions (objects calling methods)
and their internal execution (objects executing the methods). MAS-ML extends
the UML sequence diagram [13] to be possible to also model the following multi-
agent entities: agents, organizations, sub-organizations and environments. Below
we briefly present the MAS-ML extended sequence diagram.

2.1 Entity Representation

A MAS entity (e.g. an agent or an organization) is immersed in an environment
[5] and is able to play several roles in different organizations [9]. Thus the MAS-
ML sequence diagram provides notation to model the entity itself, its roles, the
organizations these roles are being played, and the environment it executes. Table
1 shows a summary of the entity identification in MAS-ML sequence diagram. For
example, in order to completely identify an agent it is necessary to identify the
environment where the agent is immersed in, the organization where the agent in
playing, and the role being played by the agent. Organizations, environments and
roles are instances of organization classes, environment classes and role classes,
respectively.

2.2 Interaction Representation

Interaction between agents and organizations is characterized by sending and
receiving messages and not by calling methods. Therefore, a speech act message
type (different from a method call) to indicate the message semantics and con-
tents was defined [13]. Figure 1 illustrates two agents interacting by sending a
Proposal message. Agent Ag1 playing role R1 in organization O1 and inhabiting
environment E1 sends a proposal message to agent Ag2 playing R2 that is in
the same organization and environment.

Modeling MAS Properties with MAS-ML Dynamic Diagrams 3

Table 1. Entity pathnames

Entity Pathname

Environment envInst : EnvClass
Organization orgInst/envInst : OrgClass/EnvClass

Sub-organization subOrgInst/roleInst/orgInst/envInst:
subOrgClass/RoleClass/OrgClass/EnvClass

Agent agentInst/roleInst/orgInst/envInst:
agentClass/RoleClass/OrgClass/EnvClass

Object objectInst/envInst : Class/EnvClass

Fig. 1. New message type: speech act message between agents

Fig. 2. Agents executing plans and their actions

2.3 Internal Execution Representation

The internal execution of agents and organizations is represented by the execu-
tion of plans and actions. While executing their plans and actions, agents and
organizations may interact with other entities. Figure 2 illustrates two agents
executing their plans (Selling and Buying) and associated actions (receiving re-
quest, sending proposal, sending request and receiving proposal).

In MAS-ML, it is possible to represent agents committing to, changing and
canceling roles. The diagram was extended with a set of stereotypes to show the
dynamic behavior related to roles (Table 2).

4 V.T. da Silva, R. Choren, and C.J.P. de Lucena

Table 2. Role stereotypes

role committment Commit to a new role

role cancel Cancel one of its roles

role change Change from one role to another

role deactivate Deactivate one of its roles

role activate Activate an inactive role

Fig. 3. Sequence diagram showing an agent changing its role

Figure 3 illustrates the use of the stereotype role change. Agent Ag1 playing
R1 in O1 and inhabiting E1 changes its role to play R3 in O2 that is in E2.
Besides illustrating the agent changing its roles (from R1 to R3), Figure 3 also
shows the agent moving from an organization to another (from O1 to O2) and
moving from an environment to another (from E1 to E2).

3 MAS-ML Extended Activity Diagram

Activity diagrams illustrate the dynamic nature of a system by modeling the
flow of control from activity to activity. These diagrams are flow diagrams that
are used to model the business workflow and the algorithmic workflow that
represents the execution of an operation.

MAS-ML proposed an extension [14] to the UML 2.0 activity diagram to
represent the execution of plans and actions using activities and actions, respec-
tively. Agents execute plans to achieve their goals, thus a stereotype was defined
to relate goals with plans. Since a goal can be achieved by several plans, the
designer can create several activity models to model all plans that achieve the
same goal. Figure 4 illustrates the use of an activity diagram to represent a
plan P, its actions (A1 and A2) and the goal (G1) the agent intends to achieve
by executing the plan. Similarly to sequence diagrams, activity diagrams were

Modeling MAS Properties with MAS-ML Dynamic Diagrams 5

Fig. 4. Activity diagram describing plan P1

extended to represent agent messages. In figure 4, the agent sends the message
M1 after executing action A2 in plan P1.

The extended activity diagram includes information to represent roles played
by agents while executing plans. Roles can be represented in two different ways:
(a) the role is identified in the context of a plan if it is possible to guarantee
that an agent will always play the same role during the plan execution, and; (b)
the role is associated with an action if an agent commits to, changes, cancels,
deactivates or activates a role while executing a plan. For instance, figure 4 shows
the role R1 related to the plan P1, which means the agent will always be playing
R1 while executing P1.

To relate actions to different roles, MAS-ML proposes the use of partitions or
action annotations to identify the roles. Figure 5 illustrates the use of partitions.
The agent is playing role R1 while executing action A3 and playing role R3 while
executing action A4. To represent the dynamic behavior related to roles (com-
mitment, activation, deactivation, changing and cancellation), the same set of
stereotypes used in the sequence diagrams can be used in the activity diagrams.
Figure 5 shows an agent changing its roles while executing the action A3.

Partitions are also used to model the organizations in which the agents are
playing roles and the environments in which they inhabit. Figure 5 depicts an
agent changing its roles by stopping playing role R1 in organization O1 and

Fig. 5. Activity diagram describing an agent changing its role

6 V.T. da Silva, R. Choren, and C.J.P. de Lucena

beginning playing role R3 in organization O2. This figure also shows that the
roles are played in different environments. R1 is played in E1 and R3 in E2.
Figure 5 illustrates exactly the same agent behavior shown in Figure 3.

4 Sample Scenarios

In order to illustrate how the agent properties are modeled using MAS-ML
sequence and activity diagrams, four scenarios were defined.
Scenario I. Agent Bob wants to buy a new laser printer. After entering a mar-
ketplace of brand new goods, Bob negotiates with a seller. Laser printers are
expensive items, so Bob bargains for a discount. The seller asks his manager for
the available discount and informs Bob. If Bob accepts the final price, Bob pays
for the printer.
Scenario II. Suppose Bob accepts the final price of the new printer and decides
to sell its old one. Bob does not need to finish the negotiation in which he is
buying the new printer in order to sell its old one. Immediately after deciding to
buy the new printer, Bob can announce its old one in a market of second-hand
goods.
Scenario III. After buying the new printer, Bob decides to buy a toner. Al-
though, Bob usually bargains when negotiating an item, in such situation it uses
a different strategy since, historically, toners do not have discounts.
Scenario IV. Suppose Bob receives a buying proposal for its old printer while
negotiating the toner and, in order to negotiate its printer, Bob needs to move
to the market of second-hand goods. Bob has two alternatives: finish the toner
negotiation or move immediately to the market of second-hand goods. In this
example, we will suppose that finding a buyer for an old printer is a difficult
task, so Bob decides to stop negotiating the toner and to move to the other
market to negotiate the printer.

5 Modeling MAS Properties

By analyzing the extended sequence and activity diagrams it is possible to verify
that the main properties of multi-agent systems can be successfully modeled. In
this paper we focus on some of MAS properties to stress how they can be modeled
by using each diagram. The properties presented here are: goal orientation, social
behavior, adaptation, mobility, distribution and concurrent execution.

5.1 Goal Orientation

Agents as well as organizations are goal-oriented entities [15]. Goals are used
as the basis for identifying agent functionalities, i.e. specific blocks of behavior.
These blocks of behavior are implemented as action plans. Thus, a plan is de-
signed to achieve a goal. We have extended the UML activity diagram to model

Modeling MAS Properties with MAS-ML Dynamic Diagrams 7

plans, and the goals achieved while executing the plan. We enhanced this dia-
gram with a goal stereotype that semantically means that a plan is designed in
the context of a goal and reaching one of its final states means that the goal
may have been achieved. It is important to mention that an activity diagram
may have several final states, and some of those states may not achieve the goal.
Final states related to the achievement of the goal should be highlighted by the
goal stereotype.

Figure 6 shows an activity diagram that models the plan executed by sellers
in scenario I. The Selling plan is executed by sellers to achieve the To have an
item sold goal. Note that only one final state indicates that the goal has been
achieved.

Fig. 6. Activity diagram modeling the goal achieved by a plan

5.2 Interaction

The interaction between the entities can be modeled in both sequence and activ-
ity diagrams because both diagrams can model messages being sent and received.
Sequence diagrams focus on the time order of the messages exchanged between
entities, on the other hand, activity diagrams focus on an agent plan workflow.
The sequence diagram allows tracking a message and finding out how such mes-
sage influences the execution of the agent that receives it. An activity diagram
focuses on modeling the messages sent and received by a single agent in the con-
text of the plan being modeled. It is not possible to model the how a message
sent by an agent will affect the execution of the agent that receives it.

Therefore, if it is important to focus on modeling numerous agents interacting,
sequence diagrams should be used. However, if it is important to picture the
messages sent and received by one agent without concerning about the execution
of other agents, activity diagrams should be used. Figure 7 illustrates scenario
I by using a sequence diagram. Such diagram models the interaction between
agent Bob that wants to buy a printer, agent John that is selling it and agent
Mary that is the manager of the marketplace. The sequence diagram was chosen
since it is important to see all the messages being sent and received by all the
agents involved in the interactions in order to understand such complex scenario.

8 V.T. da Silva, R. Choren, and C.J.P. de Lucena

Fig. 7. Sequence diagram modeling an interaction (buyer and seller)

5.3 Social Behavior

While specifying a system as a set of autonomous agents, the designer needs
a way to specify the agents’ expected behavior without exactly knowing which
agents enact that behavior. Roles solve this problem and they are used to design
social structures in multi-agent systems.

In sequence diagrams, roles and organizations are associated with the path-
name of the entity (table 1). In activity diagrams, agent roles are illustrated in
two different occasions. The plans modeled in these diagrams can be associated
with the roles played while executing the plan. Figure 6 identifies the role that
will be played by the agent while executing the plan.

As mentioned before, roles can be associated not only be with a plan as a
whole, but also with specific actions. To associate a role with an action, parti-
tions and action annotation can be used. Figure 8 shows the use of partitions
and stereotypes in the activity diagram of scenario II. The role commitment
stereotype pictures an agent committing to a new role. The Preparing to sell
action is decorated with the role commitment stereotype to indicate that the
agent playing the buyer role is committing to the seller role. After accepting the
proposal, the buyer sells its old printer while paying for the new one.

Such scenario can also be modeled in a sequence diagram. Figure 9 illustrates
the slice of the buying plan that shows a user agent, playing the buyer role,
committing to the seller role after accepting the proposal sent by a store agent.

Modeling MAS Properties with MAS-ML Dynamic Diagrams 9

Fig. 8. Activity diagram modeling an agent committing to another role

Fig. 9. Sequence diagram modeling an agent committing to another role

5.4 Adaptation

Agents typically operate in dynamic environments. If the context (e.g. the social
environment) of an agent changes to the extent that an agent is unable to cope
with its current goal, the agent needs to adapt. In this paper, adaptation refers
to the ability of an agent to abandon a previous goal or plan and adopt a new
goal or plan that better fits its current situation.

10 V.T. da Silva, R. Choren, and C.J.P. de Lucena

Fig. 10. Sequence diagram modeling a plan adaptation

Fig. 11. Activity diagram modeling a goal adaptation

Modeling MAS Properties with MAS-ML Dynamic Diagrams 11

Models that specify adaptation should express preference relations among
goals or plans. The designer must have a deep knowledge in the application
domain to guide the adaptation process, both in deciding which goals to pursue
or how to indicate the change of plans. In an adaptation process, either the goal
an agent was trying to achieve is no long the highest priority goal to pursue in
the given context (goal adaptation) or the plan an agent was executing is no long
the best fit to achieve its current goal (plan adaptation). In both cases, neither
the goal nor the plan is changed; in the adaptation context, they are replaced
by another goal or plan respectively.

Scenario III describes a situation in which agent Bob presents a plan adapta-
tion. Usually, its strategy is to bargain for an item. Yet, while buying toners, Bob
knows that it should not spend its time bargaining for toners that never have
discounts. This is an illustration of an agent executing a behavior (not bargain)
that is different from its usual (bargain). This behavior adaptation only takes
place in this particular context. This scenario is modeled in Figure 10, using a
sequence diagram. The Buying plan that presupposes the agent will bargain is
not select if the item to buy is a toner.

Scenario IV gives an example of goal adaptation. In this scenario Bob dynam-
ically changes its goal priorities. In the beginning, the goal that has the high-
est priority is the To have an item bought (the toner) goal. However, when Bob
receives a proposal of an agent that wants to buy the old printer, the priorities of
the goals change. The goal with the highest priority becomes To have an item sold
(the old printer). After achieving the To have an item sold goal, the agent may
resume the To have an item bought goal, if the developer indicates so. Figure 11
illustrates scenario IV by using an activity diagram.

The diagram element Interruptible Activity Region proposed in the UML 2.0
meta-model is used to indicate an interruption in the execution of the Buying
plan. If the condition identified in the diagram element holds, i.e. if the agent
is informed that another one is interested in buying the old printer, the agent
stops the execution of the Buying plan and starts the execution of the Selling
plan. This notation serves the purpose of modeling that the priority of the To
have an item bought goal decreases and the priority of the To have an item sold
goal increases.

Although we have used a sequence diagram to model plan adaptation, an
activity diagram could also be used. In this case, both diagrams perfectly rep-
resent the same situation. On the other hand, the goals adaptation is not eas-
ily represented in sequence diagrams. The goals’ adaptation interrupts the
sequence of the actions being executed at any time. Such interruption cannot
be easily represented in sequence diagram. However, the diagram element In-
terruptible Activity Region, used in activity diagrams, entirely represents such
situation.

5.5 Distribution

UML 2.0 sequence and activity diagrams do not provide explicit support for mod-
eling distribution. Sequence diagrams could be used to model the interaction

12 V.T. da Silva, R. Choren, and C.J.P. de Lucena

Fig. 12. Sequence diagram modeling agents inhabiting different environments

between objects that inhabit in different environments, but it provides no graph-
ical notation to explicitly indicate this situation. MAS-ML extended sequence di-
agram identifies the environments that the entities inhabit. So, it is possible to
explicitly model two entities interacting and inhabiting different environments.
For instance, figure 12 illustrates scenario IV where Bob receives a messages from
an agent that is executing in another marketplace.

Agent Daniel, which is executing in a market of second-hand goods, informs
that wants to buy Bob’s old printer. The activity diagram was also extended to
represent environments where the agents execute. While modeling the plan of
an agent, it is possible to indicate the environment that the agent will inhabit
while executing the plan. As stated before, we propose the use of partitions to
illustrate environments.

5.6 Mobility

Both diagrams were extended to model agents moving. In the extended sequence
diagram, we propose the use of the role change stereotype to model a mobility
process. Mobility refers to a two-step process: leaving the current environment
and entering a new one. To leave an environment, the agent must quit all its
roles, which means that the agent is stopping all its plans. To execute in a new
environment, the agent must start playing a role. Thus even if the roles (the old
and the new ones) are the same, there is a change of roles. Mobility is modeled
through the entity pathname which indicates that the new role is played in
another environment.

In scenario IV agent Bob moves from an environment to another when he is
informed that Daniel is interested in buying its old printer. Figure 13 illustrates
Bob receiving a message from Daniel saying the he is interested in the printer.
Then, Bob moves to the market of second-hand goods that is localized in a
machine in Brazil to negotiate with Daniel.

The same mobility process can be modeled using the extended activity dia-
gram. The role change stereotype is used to show the leave/enter process and
partitions are used to show that the environments are different. Figure 14 depicts
the same scenario illustrated in figure 13 by using an activity diagram.

Modeling MAS Properties with MAS-ML Dynamic Diagrams 13

Fig. 13. Sequence diagram modeling agents moving to another environment

Fig. 14. Activity diagram modeling agents moving to another environment

5.7 Concurrent Execution

The UML 2.0 sequence diagram provides support for annotating messages with
a parallel symbol (//) to indicate that they will be executed concurrently. We
extended this diagram to model different MAS entities executing concurrently
and the same agent concurrently executing different roles. Figure 15 illustrates
three agents executing concurrently, Bob, John and Mary.

14 V.T. da Silva, R. Choren, and C.J.P. de Lucena

Fig. 15. Sequence diagram modeling three agents executing concurrently

Fig. 16. Activity diagram modeling an agent executing two actions concurrently

The UML 2.0 activity diagram provides support for modeling actions exe-
cuting concurrently by using graphic symbols that represent forks and joins.
Therefore, by using the extended activity diagram and these available symbols
it is possible to model an agent executing several concurrent actions while ex-
ecuting the same plan. The extended activity diagram also provides support
for modeling the same agent executing different plans concurrently. Figure 16
illustrates an agent executing concurrently the Payment action of Buying plan
and Send announce to manager action of Announcing item plan.

Modeling MAS Properties with MAS-ML Dynamic Diagrams 15

6 Related Work

In this section, we will compare MAS-ML to several works that use UML se-
quence and activity diagrams to model MAS properties ([1,2,3,4,6,7,8,9,11]).

Goal-orientation: Only one approach [7] relates the plan being modeled to a
goal. However, it simply treats goals as events that trigger plans. In the MAS-
ML activity diagram a plan can always be associated with the goal it pursues.

Goal Orientation
[1,2,3,4,6,8,9,11] not present

[7] goal is event that triggers plan

MAS-ML direct association in activity diagram

Interaction: No other approach represents the environment where agents are exe-
cuting in sequence and activity diagrams. Therefore, the main difference between
our approach and those ones it that by using MAS-ML sequence and activity
diagrams it is possible to model agents from different environments interacting.

Interaction
[1,2,9,11] agents/roles interacting

[3] not present

[4] distinct roles in distinct organizations interacting

[6] ACL and signals to represent messages

[7] agents interaction

[8] send and receive stereotypes in activity diagram

MAS-ML notation on both diagrams

Social behavior: Most analyzed approachesmodel the relationship between agents,
roles and organizations that characterize the social behavior of agents.

Social behavior
[1] roles in sequence diagrams

[2] roles in action annotations

[3,6,7] not present

[4] roles and organizations on sequence diagrams

[8] swimlanes for roles

[9] stereotypes for dynamic aspects of roles

[11] organizations on both diagrams

MAS-ML notation on both diagrams (also using partitions)

Adaptation: None of the proposed approaches demonstrates the adaptation of
goals and plans illustrated by using the MAS-ML sequence and activity dia-
grams.

16 V.T. da Silva, R. Choren, and C.J.P. de Lucena

Adaptation
[1,2,3,4,6,7,8,9,11] not present

MAS-ML notation on both diagrams

Mobility: No approach satisfactorily represents agents moving from an environ-
ment to another. In [6] it is possible to indicate which agents may move and when
the movements may occur but it is not possible to indicate the environments. In [3]
it is possible to model the environments and the actions that will move the agents
but it is not clear which agents are being modeled. Although in [1] it is possible
to indicate the agents that can move to another environment, we cannot model
when such movement may occur by using deployment diagrams. By using MAS-
ML sequence diagrams it can be clearly modeled (i) the agents that may move,
(ii) when the agents may move and (iii) what are the environments involved.

Mobility
[1,3] stereotype to identify the moving agent

[2,4,7,8,9,11] not present

[6] stereotyped host

MAS-ML notation on both diagrams

Distribution: One approach [3] identifies environments only in activity diagrams.
Our proposal also uses swimlanes to identify environments but also represents
environments in sequence diagrams.

Distribution
[1,3,4,6,7,8,9,11] not present

[2] swimlanes and stereotypes

MAS-ML notation on both diagrams

Concurrency: Several approaches model different agents executing concurrently
and the same agent executing different roles in parallel. Yet, they do not model
agents from different environments executing concurrently. In [3] it is possible
to model different agents in different environments executing in parallel, but it
is not possible to identify the roles that they are playing. In MAS-ML it is pos-
sible to model agents playing different roles in different environments executing
concurrently.

Concurrency
[1] concurrent agents in sequence diagrams and concurrent roles

in activity diagrams

[2,4] concurrent roles in activity diagrams

[3] swimlanes for locations

[6,7] not present

[8] concurrent agents in activity diagrams

[9] agents executing concurrent roles

[11] concurrency only in different organizations

MAS-ML notation for agent and role concurrency on both diagrams

Modeling MAS Properties with MAS-ML Dynamic Diagrams 17

7 Conclusion

In this paper we propose the use of MAS-ML sequence and activity diagrams to
model agent properties. We provide guidelines to help agent designers to model
goal orientation, interaction, adaptation, distribution, mobility and concurrent
execution in the application agents.

We are in the way of analyzing how other properties, such as learning and
autonomy, can be modeled using MAS-ML dynamic diagrams. These properties
are more horizontal and affect (and possibly change) more than one plan and one
interaction protocol at once. The notation should provide the means to clearly
show the trace of these effects on the diagrams.

Acknowledgments. This work has been partially supported by CNPq (ESSMA
Project 552068/2002-0), by the Juan de la Cierva Program (PROMESSAS S-
0505/TIC-407) and by the Ministério de Educación y Ciencia (MIDAS TIC2003-
01000).

References

1. Bauer, B., Müller, J., Odell, J.: Agent UML: a formalism for specifying multia-
gent interaction. Software Engineering and Knowledge Engineering 11(13), 203–207
(2001)

2. Bauer, B., Odell, J.: UML 2.0 and agents: how to build agent-based systems with
the new UML standard. Engineering Applications of Artificial Intelligence 18(2),
141–157 (2005)

3. Baumeister, N., Kosiuczenko, P., Wirsing, M.: Extending activity diagrams to
model mobile systems. In: Aksit, M., Mezini, M., Unland, R. (eds.) NODe 2002.
LNCS, vol. 2591, pp. 278–293. Springer, Heidelberg (2003)

4. Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: an organiza-
tional view of multi-agent systems. In: Giorgini, P., Müller, J.P., Odell, J.J. (eds.)
Agent-Oriented Software Engineering IV. LNCS, vol. 2935, pp. 214–230. Springer,
Heidelberg (2004)

5. d’Inverno, M., Luck, M.: Understanding agent systems. Springer, New York (2001)
6. Kang, K., Taguchi, K.: Modelling mobile agent applications by extended UML ac-

tivity diagram. In: Enterprise Information Systems (ICEIS) Conference Proceed-
ings, pp. 519–522 (2004)

7. Kinny, D., Georgeff, M.: Modeling and design of multi-agent systems. In: Jennings,
N.R., Wooldridge, M.J., Müller, J.P. (eds.) Intelligent Agents III. Agent Theories,
Architectures, and Languages. LNCS, vol. 1193, pp. 1–20. Springer, Heidelberg
(1997)

8. Lind, J.: Specifying agent interaction protocols with standard UML. In:
Wooldridge, M.J., Weiß, G., Ciancarini, P. (eds.) AOSE 2001. LNCS, vol. 2222,
pp. 136–147. Springer, Heidelberg (2002)

9. Odell, J., Parunak, H., Fleisher, M.: The role of roles in designing effective agent
organizations. In: Garcia, A.F., de Lucena, C.J.P., Zambonelli, F., Omicini, A.,
Castro, J. (eds.) Software Engineering for Large-Scale Multi-Agent Systems. LNCS,
vol. 2603, pp. 27–38. Springer, Heidelberg (2003)

10. OMG: UML Specification, v.2 (2007), http://www.uml.org

http://www.uml.org

18 V.T. da Silva, R. Choren, and C.J.P. de Lucena

11. Parunak, H., Odell, J.: Representing social structures in UML. In: Wooldridge,
M.J., Weiß, G., Ciancarini, P. (eds.) AOSE 2001. LNCS, vol. 2222, pp. 1–16.
Springer, Heidelberg (2002)

12. Silva, V.T., Lucena, C.: From a conceptual framework for agents and objects to
a multi-agent system modeling language. Autonomous Agents and Multi-Agent
Systems 9(1-2), 145–189 (2004)

13. Silva, V.T., Choren, R., Lucena, C.: A UML based approach for modeling and
implementing multi-agent systems. In: Kudenko, D., Kazakov, D., Alonso, E. (eds.)
Adaptive Agents and Multi-Agent Systems II. LNCS (LNAI), vol. 3394, pp. 914–
921. Springer, Heidelberg (2005)

14. Silva, V.T., Choren, R., Lucena, C.: Using the UML 2.0 activity diagram to model
agent plans and actions. In: Autonomous Agents and Multi-Agent Systems (AA-
MAS) Conference Proceedings, pp. 594–600 (2005)

15. Shoham, Y.: Agent-oriented programming. Artificial Intelligence 60, 51–92 (1993)

M. Kolp et al. (Eds.): AOIS 2006, LNAI 4898, pp. 19–36, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Providing Contextual Norm Information in Open
Multi-Agent Systems

Carolina Felicíssimo1,3, Ricardo Choren2, Jean-Pierre Briot1,3, Carlos J.P. de Lucena1,
Caroline Chopinaud 3, and Amal El Fallah Seghrouchni 3

1 DI, PUC-Rio: Rua M. de São Vicente, 225, Gávea Rio de Janeiro, RJ, 22453-900, Brasil
{cfelicissimo,lucena}@inf.puc-rio.br

2 SE-8, IME: Pca General Tiburcio 80, 22290-270, Rio de Janeiro RJ, Brazil
choren@de9.ime.eb.br

3 LIP6, Paris VI: 104 Avenue Kennedy, 75016, Paris, France
{jean-pierre.briot,caroline.chopinaud,amal.elfallah}@lip6.fr

Abstract. Agents can freely migrate among open MASs in order to obtain re-
sources or services not found locally. In this scenario, agent actions should be
guided for avoiding unexpected behaviour. However, open MASs are extremely
dynamic and, thus, a solution for guiding agent actions is non-trivial. This work
details DynaCROM, our solution for continuously supporting agents in open
MASs with updated norm information. The main asset of DynaCROM is that it
decreases the complexity of norm representation by using contexts. DynaCROM
proposes (i) a top-down modelling of contextual norms, (ii) an ontology to ex-
plicitly represent norm semantics and (iii) a rule inference engine to customize
different compositions of contextual norms. Thus, DynaCROM offers a solution
for both developers to enhance their open MASs with norm information and
agents to be continuously supported with precise norm information.

1 Introduction

Multi-agent systems (MASs) have emerged as a promising approach to develop in-
formation systems that clearly require several goal-oriented problem-solving entities
[21]. Following this direction, we believe that in the near future information systems
will be implemented as open MASs, which will be composed of many sets of hetero-
geneous self-interested agents. These agents will be mobile agents, i.e. they will have
the capability to freely migrate among MASs for obtaining resources or services not
found locally. An MAS can be considered an open system when it presents the fol-
lowing characteristics [13]:

Heterogeneity: agents are possibly developed by different parties, in different pro-
gramming languages, with different purposes and preferences.

Accountability: agent actions must be monitored to detect the execution of behaviours
that may not be according to the overall expected functioning of the system.

Social change: agent societies are not static; they may evolve over time by updating
their information. So, future changes should be easily accommodated.

20 C. Felicíssimo et al.

In open MASs, agents may be heterogeneous, but they all must know how to as-
similate information provided to them for effective execution. In this sense, informa-
tion should be expressed in a meaningful way for agents, avoiding misunderstandings.
Moreover, the intrinsic dynamics of open MASs should be supported by a flexible
mechanism that easily permits data updates. Regarding these points, we have devel-
oped a solution for continuously providing contextual norm information to agents in
open MASs. In our opinion, open MASs should be enhanced with norm information
for guiding agent actions. Our solution, called DynaCROM (meaning dynamic con-
textual regulation information provision in open MASs) [8-11], proposes (i) a top-
down modelling of contextual norms, (ii) an ontology to explicitly represent norm
semantics and (iii) a rule inference engine to customize different compositions of
contextual norms.

DynaCROM allows for accountability since MASs and their agents continuously
have information about which norms they should follow. DynaCROM also allows for
social changes since information is defined in a central resource (an ontology) that
can easily have its data composed (thanks to rule support) and updated.

It is important to stress here that, in this work, we make no assumptions about
whether agents decide or not to be compliant with norms. DynaCROM allows the
modelling and representation of customized compositions of contextual norms, offer-
ing precise norm information for agents to consider in a given context. Thus, Dy-
naCROM provides the way for agents to reason about norm compliance and for
developers to implement normative MASs. Norm-aware agents are more likely to
perform correctly and, consequently, to achieve their goals faster.

The remainder of this paper is organized as follows. Section 2 details DynaCROM,
including its top-down modelling, use of ontology and rules, and implementation.
Section 3 describes a case study. Section 4 briefly presents how DynaCROM answers
(contextual norm information) can be used. Section 5 compares DynaCROM with two
related works. Finally, Section 6 concludes the paper and outlines future work.

2 Contextual Norm Information Provision in Open MASs

MASs are generally made up of environments, organizations and agents [20]. Envi-
ronments [36] are discrete computational locations (similar to places in the physical
world) that provide conditions for agents to inhabit. Environments can have refine-
ment levels, such as a specialization relationship (e.g. country, state), but there cannot
be overlaps (e.g. there cannot be two countries in the same place). An environment
also can have many organizations. Organizations [12] are social locations inside
which groups of agents play roles. Furthermore, an organization can have many sub-
organizations, but each organization belongs to only one environment [28]. An agent
can be in different organizations; and agents with the mobility characteristic can mi-
grate among environments or organizations. Roles [32] are abstractions that define a
set of related tasks for agents achieving their designed goals. Agents interact with
other agents from the same or different environments, organizations and roles. Envi-
ronments, organizations, roles and agent interactions suggest different contexts (im-
plicit situational information [7]) found in open MASs.

 Providing Contextual Norm Information in Open Multi-Agent Systems 21

2.1 Modelling Contextual Norms

Research in context-aware applications suggests top-down architectures for modelling
contextual information [22,18]. Thus, DynaCROM defines that norms of MASs
should be modelled according to the following four levels of abstractions: Environ-
ment, Organization, Role and Interaction contexts. We call these contexts regulatory
contexts and they are differentiated by the boundaries of their data (norms). Environ-
ment Norms are applied to all agents in a regulated environment; Organization Norms
are applied to all agents in a regulated organization; Role Norms are applied to all
agents playing a regulated role; Interaction Norms are applied to all agents involved
in a regulated interaction.

Fig. 1 illustrates the boundaries of environment, organization, role and interaction
norms. There, agents are regulated by compositions of contextual norms. For instance,
the agents on the left side of the figure are regulated by compositions of common
environment and interaction norms and by compositions of different organization and
role norms; the agents on the right side of the figure are regulated by compositions of
common environment, organization and interaction norms and by compositions of
different role norms; the two agents interacting, from the different environments, are
regulated by compositions of different environment, organization, role and interaction
norms.

We believe that the four DynaCROM regulatory contexts are not targeted to a par-
ticular application domain, but rather they represent a minimum set for a general
contextual norm information provision in open MASs. For more complex MASs, this
set should be improved with additions and refinements of regulatory contexts for
representing particular domain norms.

Norms define which actions are permitted, obliged and prohibited to be executed
by agents in an open MAS. A permitted norm defines that an act is allowed to be
performed; an obliged norm defines that an act must be performed; a prohibited norm
defines that an act must not be performed. These three types of norms described rep-
resent the three fundamental deontic statuses of an act [1] from Deontic Logic [37].
Deontic Logic makes it possible to address the issue of explicitly and formally defin-
ing norms and dealing with the possibility of violation. In normative (i.e., regulated)
open MASs, agents need to be norm-aware entities for taking into account the exis-
tence of social norms in their decisions (either to follow them or to violate them) and
to react to norm violations by other agents [5].

Fig. 1. The boundaries of Environment, Organization, Role and Interaction Norms

22 C. Felicíssimo et al.

2.2 Representing Contextual Norms

Norms should have their semantics explicitly expressed in a meaningful way for het-
erogeneous agents to process their contents. Regarding this, DynaCROM uses ontolo-
gies for representing its regulatory contexts and data. For the DynaCROM ontology,
the following definitions are valid: an ontology is a conceptual model that embodies
shared conceptualizations of a given domain [17]; a contextual ontology is an ontol-
ogy that represents contextual information [3]; and a contextual normative ontology is
an ontology that represents contextual norm information, having the norm concept as
a central asset. The DynaCROM contextual normative ontology, or simply the Dy-
naCROM ontology, is illustrated in Fig. 2.

Fig. 2. The DynaCROM ontology

The DynaCROM ontology defines six related concepts (see Fig. 2), all at the same hi-
erarchical level, for representing its environment, organization and role regulatory con-
texts. The Action concept encompasses all instances of regulated actions. The Penalty
concept encompasses all instances of fines to be applied when norms are not fulfilled. The
Norm concept encompasses all instances of norms from all regulatory contexts. The Envi-
ronment concept encompasses all instances of regulated environments; and each environ-
ment encompasses its associated norms and its owner environment (the environment it
belongs to). The Organization concept encompasses all instances of regulated organiza-
tions; and each organization encompasses its associated norms, main organization (the

 Providing Contextual Norm Information in Open Multi-Agent Systems 23

organization to which it is associated) and environment. The Role concept encompasses all
instances of regulated roles; and each role encompasses its associated norms and organiza-
tion. The Norm and Penalty concepts are specialized into sub-concepts according to the
permitted, obliged and prohibited statuses of an act from Deontic Logic.

In order to effectively be used in an open MASs, the DynaCROM ontology should
be instantiated and it probably should be extended with both particular domain con-
cepts and interaction norms. In the DynaCROM ontology, the interaction regulatory
context should be implemented by following the representation pattern [26] from a
Semantic Web Best Practices document. This pattern defines that the relation object
itself must be represented by a created concept that links the other concepts from the
relation (i.e. reification of relationship). Thus, in the DynaCROM ontology, an inter-
action norm should be represented by a new Norm sub-concept linking two Role con-
cepts. For instance, suppose that a supplier deals with a customer and the interaction
between them is regulated by a norm describing the obligation to pay when a deal is
done. The interaction norm in the DynaCROM ontology is represented by a new obli-
gation concept, called for example “ObligationToPay”, linking the supplier and cus-
tomer Role sub-concepts.

2.3 Composing Contextual Norms

After manually classifying and organizing user defined norms, according to a top-
down modelling, and explicitly representing these norms into an ontology instance,
DynaCROM uses rules to automatically compose contextual norms. This process is
simple and can be summarized as follows: DynaCROM reads an ontology instance
for getting data and the information about how concepts are structured; then, it reads a
rule file for getting the information about how concepts have to be composed accord-
ing to activated rules; and, finally, it infers a new ontology instance based on the pre-
vious readings. Fig. 3 illustrates an overview of the DynaCROM process.

Fig. 3. The DynaCROM process

DynaCROM rules are ontology-driven rules, i.e. they are created according to the
ontology structure and they are limited according to the number of related concepts to
which each concept is linked. DynaCROM has four pre-defined rules for creating a

24 C. Felicíssimo et al.

hierarchy from its regulatory contexts (e.g. every role has its norms composed with
the norms of its organization). These rules, presented in Table 1, receive as input
parameters instances of the Environment, Organization and Role concepts from a
DynaCROM ontology.

Rule1 (lines 1 – 4) states that a given environment will have its norms composed with
the norms of its owner environment (the environment it is linked to by the “belongsTo”
relationship). More precisely, the following process is executed: in (4), the owner envi-
ronment (“?OEnv”) of the given environment (“?Env”) is discovered; in (3), the norms of
the owner environment (“?OEnvNorms”) are discovered; finally, in (2), the norms of the
owner environment are composed with the norms of the given environment.

Rule2 (lines 5 – 8) states that a given organization will have its norms composed
with the norms of its main organization (the organization it is linked to by the “has-
MainOrganization” relationship). More precisely, the following process is executed:
in (8), the main organization (“?MOrg”) of the given organization (“?Org”) is discov-
ered; in (7), the norms of the main organization (“?MOrgNorms”) are discovered;
finally, in (6), the norms of the main organization are composed with the norms of the
given organization.

Rule3 (lines 9 – 12) states that a given organization will have its norms composed
with the norms of its environment (the environment it is linked to by the “isIn” rela-
tionship). More precisely, the following process is executed: in (12), the environment
(“?OrgEnv”) of the given organization (“?Org”) is discovered; in (11), the norms of
the environment (“?OrgEnvNorms”) are discovered; finally, in (10), the norms of the
environment are composed with the norms of the given organization.

Rule4 (lines 13 – 16) states that a given role will have its norms composed with
the norms of its organization (the organization it is linked to by the “isPlayedIn” rela-
tionship). More precisely, the following process is executed: in (16), it is discovered
the organization (“?Org”) of the given role (“?Role”); in (15), the norms of the or-
ganization (“?OrgNorms”) are discovered; finally, in (14), the norms of the organiza-
tion are composed with the norms of the given role.

Table 1. Rules for creating a hierarchy from the DynaCROM regulatory contexts by composing
their norms

(1) Rule1- [ruleForEnvWithOEnvNorms:
(2) hasNorm(?Env,?OEnvNorms)
(3) <- hasNorm(?OEnv,?OEnvNorms),
(4) belongsTo(?Env,?OEnv)]

(5) Rule2- [ruleForOrgWithMOrgNorms:
(6) hasNorm(?Org,?MOrgNorms)
(7) <- hasNorm(?MOrg,?MOrgNorms),
(8) hasMainOrganization(?Org,?MOrg)]

(9) Rule3- [ruleForOrgWithEnvNorms:
(10) hasNorm(?Org,?OrgEnvNorms)
(11) <- hasNorm(?OrgEnv,?OrgEnvNorms),
(12) isIn(?Org,?OrgEnv)]

(13) Rule4- [ruleForRoleWithOrgNorms:
(14) hasNorm(?Role,?OrgNorms)
(15) <- hasNorm(?Org,?OrgNorms),
(16) isPlayedIn(?Role,?Org)]

 Providing Contextual Norm Information in Open Multi-Agent Systems 25

Rules can compose data (e.g. norms) of concepts from the same type (e.g. Rule1)
or from different types (e.g. Rule3), and they also can compose data of concepts di-
rectly related (hierarchical form) or indirectly related (non-hierarchical form). Table 2
presents Rule5, which is an example of rule for composing the norms of concepts
indirectly related (the Role and Environment concepts from the DynaCROM ontology).

Table 2. A rule for composing the norms of two concepts indirectly related

(17) Rule5- [ruleForRoleWithOrgEnvNorms:
(18) hasNorm(?Role,?OrgEnvNorms)
(19) <- hasNorm(?OrgEnv,?OrgEnvNorms),
(20) isIn(?Org,?OrgEnv),
(21) isPlayedIn(?Role,?Org)]

2.4 The DynaCROM Implementation

In open systems, no centralized control is feasible. Their key characteristics are: agent
heterogeneity, conflicting individual goals and limited trust [1]. Heterogeneity and
autonomy rule out any assumption concerning the way agents are implemented and
behave. Thus, a mechanism not hard coded inside agents’ original codes and whose data
(e.g. norms) can be dynamically updated is the only viable solution for regulations in
open MASs [16]. Regarding this, the DynaCROM execution process (see Fig. 3) was
implemented as a self-contained JAVA [15] solution and encapsulated as a JADE [33]
behaviour. Thus, DynaCROM is a general solution that can be used in many application
domains without the need for extra implementations. It is only necessary to instantiate
the DynaCROM ontology and, probably, to extend it with domain concepts. Domain
rules can also be joined with DynaCROM rules.

Table 3. The core of the DynaCROM implementation

(1) Model m = ModelFactory.createDefaultModel();

(2) Resource configuration = m.createResource();

(3) configuration.addProperty (ReasonerVocabulary.PROPruleSet,

(4) ontologyDir.concat ("rulesToComposeNorms.rules"));

(5) Reasoner reasoner =

(6) GenericRuleReasonerFactory.theInstance().create(configuration);

(7) InfModel inferredModel = ModelFactory.createInfModel(reasoner, this.getOntModel());

Table 3 presents the core of the DynaCROM implementation. The process starts when
the “getOntModel()” method (see line 7) retrieves a DynaCROM ontology instance. This
ontology instance represents the regulatory contexts (by the ontology structure) and user
defined norms (by the ontology data) from an application domain. The customized com-
positions of contextual norms are specified by the rules defined in the “rulesToCom-
poseNorms.rules” file (called in line 4). The “reasoner” variable (see line 5) represents the

26 C. Felicíssimo et al.

rule-based inference engine which, based on the retrieved ontology instance and active
rules, automatically deduces the customized compositions of contextual norms. This result
is kept in the “inferredModel” variable (see line 7), which will be continuously read by
DynaCROM for keep informing agents about their updated contextual norms.

3 Case Study

The domain of multinational organizations is used for presenting our case study. This
domain was chosen because it well illustrates important implicit contextual informa-
tion found in open MASs. Fig. 4 illustrates our world, created as follows: USA is an
environment that belongs to North America; Cuba is an environment that belongs to
Central America; Brazil is an environment that belongs to South America. PUCie-Rio
and Dellie Brazil are organizations located in Brazil; Dellie Cuba is an organization
located in Cuba; Dellie Brazil and Dellie Cuba are branches of the Dellie headquar-
ters, which is located in USA. All Dellie organizations define the supplier and
customer roles; PUCie-Rio defines only the customer role. Dellie organizations sell
computers; PUCie-Rio is a university.

Fig. 4. The environments, organizations and roles created for our case study

3.1 Examples of Environment, Organization, Role and Interaction Norms

Usually, organizations do not make their norms public because they are of strategic
importance to their businesses. Because of this, we created the following environ-
ment, organization, role and interaction norms based on the available information
collected from several corporate Web sites.

3.1.1 Examples of Environment Norms
a. In Central America, if the delivery address is outside one of its environments,
every shipped order is obliged to have its price increased by 15% as taxes.

 Providing Contextual Norm Information in Open Multi-Agent Systems 27

b. In Cuba, all negotiations are obliged to be paid in Cuban pesos (CUP), its national
currency. Negotiations outside Cuba are obliged to have their values converted from
CUP to the national currency of the country in which the seller is located.

c. In Brazil, all negotiations are obliged to be paid in Reais (R$), its national curency.
Negotiations outside Brazil are obliged to have their values converted from R$ to the
national currency of the country in which the seller is located.

d. In USA, all negotiations are obliged to be paid in American dollars (USD), its nat-
ional currency. Negotiations outside USA are obliged to have their values converted
from USD to the national currency of the country in which the seller is located.

3.1.2 Example of Organization Norms
a. Dellie organizations are obliged to ask Dellie headquarters the prices of its prod-
ucts for every large order placed (more than 100 items).

b. Dellie organizations are prohibited from delivering orders during holidays in their
final destinations.

3.1.3 Example of Role Norms
a. In Dellie Brazil, sellers are obliged to ship complete orders on their due dates.

b. In Dellie Cuba, sellers are prohibited to offer more than 8% as discounts.

3.1.4 Example of an Interaction Norm
a. In Dellie Cuba, customers are obliged to make a down payment of 10% for every
order placed to a seller.

3.2 Representing Our Created World

The DynaCROM ontology was extended and instantiated, by using the Protégé Editor
[31], for representing the world of our case study. As an example, the Environment
(DynaCROM) concept was extended with the “Continent” and “Country” (domain)
sub-concepts. Thus, “NorthAmerica”, “CentralAmerica”, and “SouthAmerica” were
created as instances of the “Continent” concept; and “USA”, “Cuba” and “Brazil”
were created as instances of the “Country” concept.

For explaining how domain contextual norms are represented, we will use the or-
ganization norm 3.1.2.b as motivation. For this norm, precise information about holi-
days is important data. Environments can have both federal holidays, which are
applied to all cities from a country, and city holidays, which are only applied for a
city. Yet, these holidays can be in the same dates, as Christmas Day (December, 25)
and New Year’s Day (January, 01), or on different dates, as Independence Day (e.g.
September, 07 in Brazil and July, 04 in USA) and Labor Day (e.g. May, 05 in Brazil
and in the first Monday of September in USA). For representing the information
about holidays, the “Holiday” concept with its “FederalHoliday” and “CityHoliday”
sub-concepts were created in a DynaCROM domain ontology. Then, these concepts
were instantiated for supporting the organization norm 3.1.2.b. For instance, Fig. 5
illustrates the city and federal holidays created for a city called “RioDeJaneiro” lo-
cated in “Brazil”.

28 C. Felicíssimo et al.

As previously mentioned, domain rules can be freely created and joined with Dy-
naCROM rules. Table 4 illustrates a domain rule (Rule6), which states that a given
city will have its holidays composed with the holidays of its country. More precisely,
the following process is executed: in (25), the country (?Country) of the given city
(?City) is discovered; in (24), the holidays of the country (?FederalHolidays) are
discovered; finally, in (23), the holidays from the country are composed with the
holidays of the given city.

Fig. 5. Part of a DynaCROM domain ontology, extended and instantiated

As previously mentioned, domain rules can be freely created and joined with Dy-
naCROM rules. Table 4 illustrates a domain rule (Rule6), which states that a given
city will have its holidays composed with the holidays of its country. More precisely,
the following process is executed: in (25), the country (?Country) of the given city
(?City) is discovered; in (24), the holidays of the country (?FederalHolidays) are
discovered; finally, in (23), the holidays from the country are composed with the
holidays of the given city.

For instance, regarding the organization norm 3.1.2.b and that PUCie-Rio is an or-
ganization in a city called “RioDeJaneiro” (located in “Brazil”), Rule6 provides the
information that Dellie suppliers are prohibited to deliver PUCie-Rio orders during

 Providing Contextual Norm Information in Open Multi-Agent Systems 29

the following holidays: "CariocaCityBirthday", "ChristmasDay", "CorpusChristi",
"NewYearsDay", "BrazilianIndependenceDay" and "BrazilianLaborDay" (see these
instances in Fig. 5).

Table 4. A rule for composing city and federal holidays

(22) Rule6- [ruleForCityWithFederalHolidays:
(23) hasHoliday(?City,?FederalHolidays)
(24) <- hasHoliday(?Country,?FederalHolidays),
(25) belongsTo(?City,?Country)]

3.3 Implementation

Our case study was implemented in JAVA, using JADE and the JENA API [19].
JADE containers were used for representing the abstractions of environments and
organizations. Agents were implemented extending the JADE Agent class with both
an attribute for agents’ locations and two specific behaviours. One behaviour is called
Migratory and it makes agents move randomly from one location to another. The
other behaviour is called Normative and it continuously informs agents about their
current contextual norms, representing the DynaCROM core. Once an agent migrates,
its location attribute is updated and, consequently, the answers from its Normative
behaviour change for informing its new contextual norms. Moreover, because Dy-
naCROM is implemented as an active JADE behaviour, it always executes the
process illustrated in Fig. 3. Thus, if any norm is updated in a DynaCROM ontology
instance or if any new composition of contextual norms is done in a DynaCROM
rule file, agents concerned with these changes will automatically receive different
answers.

Fig. 6 illustrates the JADE containers created for representing the USA, Cuba and
Brazil environments and for representing the Dellie, Dellie Cuba and Dellie Brazil
organizations. These containers offer possible locations for mobile agents to move to.
For instance, an agent called “*****MobileAgent”, which has the Migratory and
Normative behaviours, is in Cuba. There, DynaCROM informs the agent about

Fig. 6. JADE containers for representing our environments and organizations

30 C. Felicíssimo et al.

environment norms 3.1.1.a and 3.1.1.b. If the agent migrates to Dellie Brazil, then,
DynaCROM informs the agent about environment norms 3.1.1.c and 3.1.1.d, organi-
zation norms 3.1.2.a and 3.1.2.b, and role norm 3.1.3.a. All informed norms are in
compliance with the norms of our case study, DynaCROM hierarchical form and
agent contexts.

4 Using Contextual Norm Information

In the current version of DynaCROM, norms are not enforced. DynaCROM keeps
relaying information about them to agents, who are free to decide if they will or not
use the information. However, DynaCROM can have its output (agents’ updated con-
textual norms) used as a precise input for norm enforcement solutions and, in turn, it
can make use of the outputs from these solutions (e.g. information about agents’ vio-
lated norms).

4.1 Using DynaCROM Output as an Input for a Norm Enforcement Solution

We are currently studying both how DynaCROM output can be used as a precise
input for a norm enforcement framework and what DynaCROM can have back from
this framework. The chosen framework is called SCAAR (meaning Self-Controlled
Autonomous Agents geneRator) [6] and it enhances agents with a self-monitoring
capability for avoiding norm violation. Because the current version of SCAAR is
implemented in SICStus Prolog [29], we still could not use it as a fully norm en-
forcement mechanism for DynaCROM (implemented in JAVA). However, we are
already being able to use SCAAR for informing DynaCROM about norm violations.

Fig. 7. DynaCROM and SCAAR working together

 Providing Contextual Norm Information in Open Multi-Agent Systems 31

Fig. 7 illustrates how DynaCROM and SCAAR work together. DynaCROM is re-
sponsible for continuously informing SCAAR about the norms of agents, according to
their current contexts. SCAAR uses this information as a precise updated input instead
of using general and pre-defined (outdated) information. SCAAR keeps verifying norm
compliance and, if a norm is violated, SCAAR sends that information to DynaCROM.

4.2 Using a Norm Enforcement Solution for Detecting Norm Violation

For exemplifying how DynaCROM and SCAAR can represent a powerful comple-
mentary solution while detecting norm violation in open MASs, a simple (not com-
pleted) scenario is proposed. The scenario is created according to the world and
norms from Section 3 and it can be summarized by the following steps:

a. A Dellie Brazil supplier receives a large order (1500 computers) from PUCie-Rio.

b. Dellie Brazil does not have all the CPUs necessary to build the computers ordered.
So, 500 more CPUs will need to be bought.

c. The Dellie Brazil supplier decides to buy the missing 500 CPUs from Dellie Cuba.

d. The Dellie Brazil supplier asks Dellie the price of each CPU.

e. Dellie answers to the Dellie Brazil supplier the price of US$100 for each CPU.

f. The Dellie Brazil supplier multiplies the value (in US$) of each CPU by 500 and
converts the value to CUP (Cuban Pesos), the Cuban national currency. The final
price for the order is: US$100 * 500 = US$5000 * CUP1 = CUP5000.

g. The Dellie Brazil supplier (being a Dellie Cuba customer) sends the order to a Dellie
Cuba supplier with the value of CUP500 as a down payment for the placed order.

h. The Dellie Cuba supplier informs the Dellie Brazil supplier that the value for the
down payment is wrong because it is necessary to increase the final price by 15%
as taxes. The correct value for the down payment is: (CUP5000 +15%) *0.1 =
(CUP5750) *0.1 = CUP575.

After step 4.2.c from the scenario above, all the following steps have contextual
norms associated to them. These norms are re-written by DynaCROM according to
both SCAAR syntax and current agent contexts and sent, in a sequence order one by
one, from DynaCROM to SCAAR as different inputs (see Fig. 7).

Table 5 presents the SCAAR contextual norms written for the proposed scenario.
SCAARNorm1 (lines 1 – 4) represents the DynaCROM organization norm 3.1.2.a for
regulating step 4.2.d. SCAARNorm2 (lines 5 – 9) represents the DynaCROM environ-
ment norm 3.1.1.0 for regulating step 4.2.e. SCAARNorm3 (lines 10 – 13) represents
the DynaCROM environment norm 3.1.1.b for regulating step 4.2.f. SCAARNorm4
(lines 14 – 18) represents the DynaCROM interaction norm 3.1.4.a for regulating step
4.2.g. SCAARNorm5 (lines 19 – 24) represents the DynaCROM environment norm
3.1.1.a for regulating step 4.2.h.

SCAAR makes use of DynaCROM inputs (contextual norms) for regulating agent
actions. These actions (e.g., “askPrice”, “informPrice”, “giveDownPayment”, “sen-
dOrder”, “addTaxes” from Table 5) are known a priori by SCAAR. Then,

32 C. Felicíssimo et al.

Table 5. SCAAR contextual norms

(6) [(agt: aSupplier)
(7) FORBIDDEN (agt do givePrice with
(8) currency # usDollars)
(9) IF (agt be location with country = USA)]

(10) SCAARNorm3-
(11) [(agt: aSupplier)
(12) FORBIDDEN (agt do givePrice with currency # CUP)
(13) IF (agt be location with country = Cuba)]

(14) SCAARNorm4-
(15) [(agt: aDellieCubaCustomer)
(16) OBLIGED (agt do downPayment with percent = 10)
(17) BEFORE (agt do sendOrder with
(18) shipperOrganization = DellieCuba)]

(19) SCAARNorm5-
(20) [(agt: aDellieCubaCustomer)
(21) OBLIGED (agt do addTaxes with percent = 15)
(22) BEFORE (agt do sendOrder with shipperCountry # C)
(23) IF (agt be location with
(24) situated = Central America and country = C)]

(1) SCAARNorm1-
(2) [(agt: aDellieSupplier)
(3) OBLIGED (agt do askPrice with receiver = Dellie)
(4) BEFORE (agt do informPrice with quantity > 100)]

(5) SCAARNorm2-

Table 6. The SCAAR algorithm for norm enforcement

(1) Let I be information about the agent behaviour.
(2) Let {t1,...,tn} be the set of transitions associated with I.
(3) Let {P1,...,Pm} be the set of Petri nets associated with the agent.
(4) Let {Pact1,...,Pactp} be the set of activated Petri nets (i.e. associated with the
 norms to be manage)
(5) Let tij be the transition i of the net j.
(6) for all Pk in {P1,...,Pm} with t1k in {t1,...,tn}}
(7) Pact(p+1)<- create an instance of Pk
(8) add Pact(p+1) in {Pact1,...,Pactp}
(9) end for
(10) Let {Pact1,...,Pactl} be the set of the activated Petri nets including a tij in
 {t1,...,tn}, j in {1,...,l}
(11) for all Pactj in {Pact1,...,Pactl}
(12) inform Pactj of the information associated with tij
(13) end for

SCAAR adds in agent codes both control hooks and an enforcement core. These addi-
tions are completely transparent to agents. While an agent is executing, its control
hooks (automatically) keep informing the enforcement core about the execution of
regulated actions. Table 6 presents this algorithm. Then, the enforcement core
(automatically) keeps verifying if each action is executing according to its norms. If
not, it stops the execution of the action and informs the violation to DynaCROM.

 Providing Contextual Norm Information in Open Multi-Agent Systems 33

Verification of norm compliance is done by using Petri nets [25] for representing
norms and by following the algorithm presented in Table 7.

Table 7. The SCAAR algorithm for verifying norm compliance

(1) Let {t1,..,tn} be the set of transitions of the Petri net.
(2) Let I be the sent information.
(3) Let tI be the transition associated with the information I in {t1,...,tn}
(4) A transition ti is activated if a token stands in all the previous places of ti (in
 SCAAR Petri net, arcs are one-valuated).
(5) if tI is activated then
(6) if tI is fireable then
(7) fire the transition tI
(8) else throw exception

Returning to our example, SCAAR detects the norm violation that occurred in step

4.2.h by using the algorithms presented in Table 6 and Table 7 as follows: the control
hook for the action “sendOrder” of the Dellie Cuba supplier sends to the agent en-
forcement core notification that the action is being performed. Thus, the agent en-
forcement core creates instances of Petri nets for representing the norms of the action
(SCAARNorm3, SCAARNorm4 and SCAARNorm5 from Table 5). For instance, P1
(see below) is the Petri net created for representing the norm SCAARNorm5.

P1: <P, T, Pre, Post>: ((p1,p2,p3,p4), (tlocation, tsendOrder, taddTaxes), (Pre(p1, tlocation), Pre(p2,
taddTaxes), Pre*(p2, tsendOrder)), (Post(p2, tlocation), Post(p3, taddTaxes), Post(p4, tsendOrder)))

*: it means an inhibitor arc between the transition and the previous place. A transition

with an inhibitor arc can be fired when the previous place is empty.

The enforcement core of the Dellie Cuba supplier retains the information about Ilo-

cation, IaddTaxes and IsendOder from the associated control hooks of the agent. When the
agent arrives in Cuba, the enforcement core receives the information about Ilocation.
Thus, the Petri net P1 is activated and the transition is fired by putting the Petri net
token in the next place (p2). When the Dellie Brazil supplier tries to perform the ac-
tion “sendOrder”, its enforcement core blocks the execution of the action, because the
transition taddTaxes was not yet executed (the Petri net token didn’t pass through p2
before being in p3), and throws an exception.

5 Related Work

García-Camino et al. [14] propose a distributed architecture to endow MASs with a
social layer, in which normative positions are explicitly represented and managed via
rules. Every external agent from the architecture has a dedicated governor agent con-
nected to it, enforcing the norms of executed events. DynaCROM also uses rules to
manage normative agent positions, although its focus is on executed actions instead of
executed events. Norm enforcement in DynaCROM can be done with a few dedicated
governor agents responsible for monitoring only executed actions. For instance, an open
MASs from the traffic domain enhanced with DynaCROM can have only dedicated

34 C. Felicíssimo et al.

governor agents (e.g. playing the police officer role) for monitoring the speed of the
cars that pass through regulated crossroads. Thus, it is not necessary to duplicate the
number of agents for having the norm enforcement. Moreover, DynaCROM provides a
more precise mechanism for norm representation while using contexts.

Vázquez-Salceda et al. [34] propose the OMNI framework (Organizational Model
for Normative Institutions) for modelling agent organizations. Comparing Dy-
naCROM with OMNI, we find that both define a meta-ontology with a taxonomy for
norm representation. One difference between the works is that, in OMNI, enforce-
ment is carried out by any internal agent from an MAS; in DynaCROM, enforcement
is carried out only by specific trusted agents or by the own regulated agents. A second
difference between the works, and the most important, is that, in OMNI, the idea of
different levels of abstractions for norms is not explicit, especially for the environ-
ment and role levels. On the other hand, DynaCROM is entirely based on different
levels of abstractions for norms (its regulatory contexts) for simplifying the tasks of
norm management and evolution. For instance, the social structure of an organization
in OMNI describes, at the same level of abstraction, norms for roles and groups of
roles. A group of roles is used to specify norms that hold for all roles in the group.
DynaCROM uses the organization regulatory context to specify organization norms,
which hold for all roles from an organization, and it uses the role regulatory context to
specify role norms, both regulatory contexts from different levels of abstractions.

6 Conclusion

In this paper, we detail DynaCROM – our ongoing work for providing contextual norm
information in open MASs. For agents, DynaCROM retaining updated norm informa-
tion according to their contexts. Norm-aware agents can use the provided norm informa-
tion for correct performance and, thus, for achieving their goals faster. For developers,
DynaCROM decreases the complexity of norm management in two different cases. The
first case is when norms need to be added, updated or deleted. For this case, simply
updating the ontology instance concludes the evolution. The second case is when new
compositions of contextual norms are desired. For this case, simply activating or deacti-
vating existing rules or creating new ones concludes the evolution. The dynamics for
manually customizing several compositions of contextual norms is given by different
activations and deactivations of rules, which can be modified at system run-time.

DynaCROM has been used in three different application domains. For the domain
of ubiquitous computing [18,30], DynaCROM has been used in the implementation of
context-aware pervasive mobile applications [35]. Instead of using JADE containers
for simulating environments and organizations, we are using MoCA (Mobile Collabo-
ration Architecture) [27] for delivering updated real location information of
mobile devices. MoCA infers mobile devices’ locations based on the intensity of their
signals to 802.11 network access points. DynaCROM uses MoCA answers (device
locations) to continuously apply contextual norms in the agents from the mobile de-
vices. For the domain of next-generation wireless communications [2], DynaCROM
has been used to automatically change prices and other parameter values (based on
pre-defined rules) according to overloads in regulated networks. The idea is to keep
balancing the use of network bandwidths by distributing clients in particular net-
works. Clients will be guided to always use a non-overloaded network by following

 Providing Contextual Norm Information in Open Multi-Agent Systems 35

pricing discounts. Thus, clients can be better distributed in regulated networks by only
changing domain rules and data. For the domain of the Brazilian navy [4],
DynaCROM has been used for dynamically determining better routes for ships based
on climate and other pre-defined conditions.

The current version of DynaCROM has three main points that need improvement.
The first improvement is that DynaCROM should deal with conflicts; the second
improvement is that DynaCROM should detect norm violations; and the third im-
provement is that DynaCROM should enforce norms for avoiding their violation.
DynaCROM is not currently addressing the issue (general and difficult) of conflicts,
but its modularization of norms helps to make this information more manageable. For
the second and third improvements, the SCAAR solution for norm enforcement is
being studied. We chose SCAAR instead of LGI (a well-known solution for norm
enforcement) [23-24], mainly because SCAAR permits the enforcement of norms that
are not related only to agent interactions. Thus, SCAAR will make it possible to en-
force DynaCROM environment, organization and role norms independently of the
enforcement of interaction norms. For future work, we are planning to implement
SCAAR in JAVA in order to fully integrate it with DynaCROM. We believe that
DynaCROM and SCAAR can represent together a unique and powerful contextual
norm enforcement solution for open MASs.

Acknowledgments

This work was partially funded by the ESSMA (CNPq 552068/2002-0) and EMACA
(CAPES/COFECUB 482/05 PP 016/04) projects, and by CNPq individual grants.

References

1. Artikis, A., Pitt, J., Sergot, M.: Animated specifications of computational societies. In:
AAMAS 2002, Part III, pp. 1053–1061 (2002)

2. Berezdivin, R., Breinig, R., Topp, R.: Next-generation wireless communications concepts
and technologies. In the IEEE Communications Magazine 40, 108–116 (2002)

3. Bouquet, P., Giunchiglia, F., Harmelen, F.v., Serafini, L.: C-OWL: Contextualizing On-
tologies. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870,
pp. 164–179. Springer, Heidelberg (2003)

4. Brazilian navy (2006), https://www.mar.mil.br/
5. Castelfranchi, C., Dignum, F., Jonker, C.M., Treur, J.: Deliberative Normative Agents:

Principles and Architecture. In: Procs. of the ATAL 1999 (1999)
6. Chopinaud, C., Seghrouchini, A.E.F., Taillibert, P.: Prevention of harmful behaviors

within cognitive and autonomous agents. In: Procs. of the ECAI 2006, pp. 205–209 (2006)
7. Dey, A.: Understanding and using context. Personal and Ubiquitous Computing 5(1), 4–7

(2001)
8. Felicíssimo, C.H.: Dynamic Contextual Regulations in Open Multi-agent Systems. In:

Cruz, I., Decker, S., Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo,
L. (eds.) ISWC 2006. LNCS, vol. 4273, pp. 974–975. Springer, Heidelberg (2006)

9. Felicíssimo, C.H., de Lucena, C.J.P., Briot, J.-P., Choren, R.: Regulating Open Multi-
Agent Systems with DynaCROM. In: Procs. of the SEAS (2006)

10. Felicíssimo, C.H., de Lucena, C.J.P., Briot, J.-P., Choren, R.: An Approach for Contextual
Regulations in Open MAS. In: Procs. of the AOIS (2006)

36 C. Felicíssimo et al.

11. Felicíssimo, C.H., de Lucena, C., Carvalho, G., Paes, R.: Normative Ontologies to Define
Regulations over Roles in Open Multi-Agent Systems. In Procs. of the AAAI Fall Sympo-
sium TR FS-05-08. (2005). ISBN 978-1-57735-254-9

12. Ferber, J., Gutknecht, O., Michael, F.: From Agents to Organizations: an Organization
View of Multi-Agent Systems. In: Procs. of the AOSE (2003)

13. Garcia-Camino, A., Noriega, P., Rodríguez-Aguillar, J.A.: Implementing Norms in Elec-
tronic Institutions. In: Procs. of the AAMAS, vol. 2, pp. 667–673 (2005)

14. García-Camino, A., Rodrígurez-Aguilar, J.A., Sierra, C., Vasconcelos, W.: A Distributed
Architecture for Norm-Aware Agent Societies. In Procs. of the DALT 2005. (2005)

15. Gosling, J., Joy, B., Junior, G.L.S., Bracha, G.: The Java Language Specification. ISBN 0-
201-31008-2 (2006), http://java.sun.com/

16. Grizard, A., Vercouter, L., Stratulat, T., Muller, G.: A peer-to-peer normative system to
achieve social order. In: Procs. of the COIN@AAMAS (2006)

17. Gruber, T.R.: A translation approach to portable ontology specifications. Knowledge Ac-
quisition 5(2), 199–220 (1993)

18. Henricksen, K., Indulska, J.: Developing context-aware pervasive computing applications:
models and approach. Pervasive and Mobile Computing. Elsevier, Amsterdam (2005)

19. Jena (2006), http://jena.sourceforge.net/
20. Jennings, N.R.: On Agent-Based Software Engineering. AI 117(2), 277–296 (2000)
21. Jennings, N., Sycara, K., Wooldridge, M.: A Roadmap of Agent Research and Develop-

ment. The Journal of Agents and Multi-Agent Systems 1, 7–38 (1998)
22. Khedr, M., Karmouch, A.: ACAI: Agent-Based Context-aware Infrastructure for Spontane-

ous Applications. Journal of Network & Computer Applications 28(1), 19–44 (1995)
23. Minsky, N.H.: The imposition of protocols over open distributed systems. IEEE Transac-

tions on Software Engineering (1991)
24. Minsky, N.H.: LGI (2006), http://www.moses.rutgers.edu/
25. Murata, T.: Petri nets: Properties, analysis and applications. IEEE 77(4), 541–580 (1989)
26. Noy, N.: Rector, A. (eds.): Defining N-ary Relations on the Semantic Web: Use with Indi-

viduals (2006), http://www.w3.org/TR/swbp-n-aryRelations/
27. Rubinsztejn, H.K., Endler, M., Sacramento, V., Gonçalves, K., Nascimento, F.N.: Support

for context-aware collaboration. Procs. of the MATA 5(10), 34–47 (2004)
28. Silva da, V.T.: From a conceptual framework for agents and objects to a multi-agent sys-

tem modeling language. Ph.D. Thesis. Port. p. 252 PUC-Rio (2004)
29. SICStus Prolog (2006), http://www.sics.se/isl/sicstuswww/site/
30. Soldatos, J., Pandis, I., Stamatis, K., Polymenakos, L., Crowley, J.L.: Agent based mid-

dleware infrastructure for autonomous context-aware ubiquitous computing services. The
Journal of Computer Communications (2006)

31. Stanford University School of Medicine: Protégé (2006), http://protege.stanford.edu/
32. Thomas, G., Williams, A.B.: Roles in the Context of Multiagent Task Relationships. In:

Procs. of the AAAI Fall Symposium TR FS 2005-2008 (2005) ISBN 978-1-57735-254-9
33. Tilab Co. JADE - Java Agent DEvelopment Framework (2006), http://jade.tilab.com
34. Vázquez-Salceda, J., Dignum, V., Dignum, F.: Organizing Multiagent Systems. The Jour-

nal of Autonomous Agents and Multi-Agent Systems 11(3), 307–360 (2005)
35. Viterbo, J., Felicissimo, C., Briot, J.-P., Endler, M., Lucena, C.: Applying Regulation to

Ubiquitous Computing Environments. In: Procs. of the SEAS (2006)
36. Weyns, D., Parunak, H.V.D., Michel, F., Holvoet, T., Ferber, J.: Environments for Multiagent

Systems State-of-the-Art and Research Challenges. In: Weyns, D., Parunak, H.V.D., Michel,
F. (eds.) E4MAS 2004. LNCS (LNAI), vol. 3374, pp. 1–47. Springer, Heidelberg (2005)

37. Wright, G.H.v: Deontic Logic. Mind, New Series 60(237), 1–15 (1951)

M. Kolp et al. (Eds.): AOIS 2006, LNAI 4898, pp. 37–52, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Reputation Model Based on Testimonies

José de S.P. Guedes1, Viviane Torres da Silva2,*, and Carlos J. P. de Lucena1

1 Computer Science Dept (PUC-Rio) Rua M. de S. Vicente 225, RJ 22453-900, Brazil
{jguedes,lucena}@inf.puc-rio.br

2 Depart. of Sist. Inf. y Comp. (UCM) C/ Prof. J.G. Santesmases, s/n, Madrid 28040, Spain
viviane@fdi.ucm.es

Abstract. Reputation mechanisms are used to increase reliability and perfor-
mance in virtual societies. Different decentralized reputation models have been
proposed based on interactions among agents. Each system agent evaluates and
stores the reputation of the agents with whom they have interacted and can give
testimony to other agents about these reputations. The main disadvantages of
these approaches when applied to open large-scale multi-agent systems are the
difficulty of establishing strong links between the agents and the sometimes
infeasible witness search process. In this paper we propose a hybrid reputation
system with centralized and decentralized characteristics to overcome these
problems. Reputations are provided by the system agents themselves but also
by centralized subsystems that can be easily reached by any agent and can
supply reliable reputations of any agent based on testimonies about undesired
agent behaviour. Such behaviour is characterized by the violation of system
norms.

1 Introduction

Reputation systems collect, distribute, and aggregate feedback about participants’ past
behaviour. These systems help agents to decide whom to trust and also help agents to
discourage participation by those who are dishonest [8]. In centralized reputation
models, such as ebay [4], Amazon Auctions [2], and Sporas [15], a reputation system
receives feedback about the interactions among the agents. Each agent evaluates the
behaviour of the agents with which they interact and reports to the reputation system.
The reputation system puts together all evaluations and stores the reputation of the
agents. The reputation of each agent is, therefore, a single global value.

An advantage of these approaches is that the reputations of the agents are always
available in the centralized reputation system. However, an important drawback of this
approach is that the agents are not able to store the reputations with which they have
interacted and must therefore use the information stored in the centralized systems.

In contrast, an agent in a decentralized reputation system evaluates and stores the
reputations of the agents with which it has interacted. There is no central reputation
system with this responsibility. The most important disadvantage of such an approach

* Research supported by the Juan de la Cierva programa, Comunidad de Madrid (PROMESSAS

S-0505/TIC-407) and Ministério de Educación y Ciencia (DESAFIOS TIN2006-15660-C02-
01).

38 J. de S.P. Guedes, V. Torres da Silva, and C.J.P. de Lucena

takes place when agents need to know the reputation of other agents with which they
have not yet interacted. Since there is no central reputation system with this
information, approaches such as [1], FIRE [6], Regret [9,10] and [13,14] propose the
use of testimonies provided by agents that have interacted with the desired ones.
These agents can provide information about their previous interactions with the
desired agents.

However, when considering open large-scale multi-agent systems three problems
arise. First of all, agents must meet frequently in order for it to be possible to establish
strong links among them and to pass along consistent reputations. This is often not
possible when dealing with open systems where agents frequently enter and leave the
systems. Secondly, the process of searching for agents that have interacted with the
desired agents may take a long time. It may be very difficult or take too much time to
discover which agents have interacted with the desired ones in a large-scale system.
Finally, reputations are influenced by the agents’ point of view. Two agents may
evaluate the same behaviour in different ways. The violation of the same norm can be
interpreted differently by different agents.

In order to overcome these problems, FIRE proposes to use certified reputations
that are references provided by other agents about the agent’s behaviour. Each agent
has numerous certified reputations (or references) provided by the agents with whom
they have interacted with and therefore can offer those references to agents that wish
to interact with that agent. Other reputation models such as Policy-Maker [5] and
Trust-Serv [12] also use this approach. The main benefit of this approach is the high
availability of the reputations since any agent can easily learn the reputation of any
other. But the most significant weakness of this approach is that certified information
probably overestimates an agent’s expected behaviour. Since agents are self-
interested entities they will only offer their best ratings. In addition, certified
reputations are influenced by the point of view of the agents who provided them.

In this paper we propose a reputation model that combines the features of the
centralized and decentralized approaches described above in order to overcome these
problems. In our approach, as well as in FIRE and Regret, agents are able to evaluate
the past behaviour of other agents and store the reputation of each agent with whom
they have interacted (the decentralized part). In addition, our approach also provides
individual organizations with the ability to evaluate and store the reputations of agents
(the centralized part). We assume that large-scale multi-agent systems are composed
of (a hierarchy of) organizations (or groups) where agents are playing roles. The
organizations evaluate the reputation of an agent based on testimonies provided by
other agents about the past behaviour of this agent.

Different from other systems that deal with testimonies, the organizations do not
receive the reputations evaluated by the agents. On the contrary, they receive
testimonies about agent’s bad behaviour, i.e., about system norms (or laws) violated
by the agents. The organizations evaluate the reputation of the agents according to the
norms that they have violated. Norm violations characterize undesirable agent
behaviour and negatively affect the reputation of agents that commit the violations.

Since our approach combines the features of centralized and decentralized
approaches, the problems we have identified are solved:

 A Reputation Model Based on Testimonies 39

(i) Agents did not need frequent meetings in order to be consistent in ranking
the reputations of other agents. They can consult organizations that store
reputations that have been evaluated based on several interactions with
agents;

(ii) To find out someone that can provide the reputation of an agent is not time
expensive. The organizations where the agent is playing roles can be
consulted;

(iii) The reputations provided by organizations are not over estimated unlike the
case of certified reputations. Organizations are reliable / certifiable systems
that do not make distinctions between agents;

(iv) The reputations provided by organizations are not biased by the opinions of
others. The reputations are evaluated according to the characteristics of the
norms that are violated. The specification of each norm describes how its
violation influences the reputation of the agent;

(v) Agents do not need to use the reputations provided by organizations if they
do not wish. They are capable of evaluating and storing the reputation of
other agents.

In this paper we present the reputation model used by organizations to evaluate the
reputation of their agents. The specification of the mechanisms used by the agents to
evaluate and store the reputations is beyond the scope of this paper since any
available decentralized mechanism, such as FIRE or Regret, can be used.

The paper is organized as follows. Section 2 briefly describes the subsystem that
evaluates the testimonies provided by the agents. Section 3 describes the reputation
model being proposed in this paper. In Section 4 a case study is used to illustrate our
approach. Section 5 examines some related work and Section 6 presents conclusions
and some proposals for future research.

2 Evaluating the Testimonies

When an agent violates a system norm, and this is perceived by another agent, the
agent can testify to the reputation subsystem about the violation. The agents that
testify are those motivated to do so, i.e., they benefit when other agents act according
to the norms or they are harmed when those agents violate the norms.

Note that agents can also give false testimony in order to harm other agents or
benefit themselves. In an open system, agents are independently implemented and the
application cannot assume that agents were properly designed. Therefore, there is a
need to verify and establish the truth of the testimonies.

In [11] we propose a judgement subsystem that is responsible for receiving the
testimonies and providing a decision (or verdict) verifying whether, in fact, an agent
violated a norm. While judging a testimony, the subsystem may use different
strategies to determine the violation of the norms specified by the application. These
strategies may use the agents’ reputation provided by the reputation subsystem to help
in making the decision. Both the judgement and the reputation subsystems should be
implemented by the organizations where the agents are playing roles.

Moreover, since it may be difficult to find out if a testimony is true or false and,
therefore, to provide a correct decision, the judgement subsystem can overcome this

40 J. de S.P. Guedes, V. Torres da Silva, and C.J.P. de Lucena

problem by using uncertainty. The judgement subsystem may assign blame within an
appropriate margin of error.

In this paper we assume that the judgement subsystem uses uncertainty and that it
will inform the reputation subsystem about the percentage of blame an agent has for
violating a norm. On the one hand, if the verdict provided by the judgement
subsystem states the agent has more than 50% of chance of having violated a norm,
the agent is condemned and his reputation will be diminished according to the norm
violated. On the other hand, if the verdict indicates that the agent has a less than (or
equal to) 50% chance of being guilty, the agent is absolved and the witness is
condemned for having provided false testimony. Note that it is beyond the scope of
this paper to detail the judgement subsystem already presented in [11]. This paper
focuses on the presentation of the reputation mechanism that receives the verdicts
provided by the judgement subsystem and updates the reputation of the agents.

3 The Reputation Model

The hybrid reputation model proposed in this paper combines the decentralized and
centralized approaches as illustrated in Figure 1. In our model, each system agent is
capable of evaluating the reputation of the agents with whom it interacts and then
stores the reputation of those agents. In this way, the reputation model can be
characterized as a decentralized one. To implement the decentralized reputation part
any published decentralized reputation model such as [1], FIRE, and Regret can be
used.

Judgment
System

Reputation
System

Governance System

interaction

update B´s
reputation

update A´s
reputation

A B
(testimony)

A violated n1

verdict

update A´s reputation
(defendant) or
update B´s reputation
(witness)

C
A’s reputation ?

0,8

Centralized
Reputation Model

Decentralized
Reputation Model

Fig. 1. Hybrid Reputation Model

In addition, we propose a centralized reputation system that evaluates the
reputation of the agents based on violated norms. Besides being able to evaluate and
store other agents’ reputations, agents would also be able to interact with the
centralized system in order to provide information about norm violations. Any time an
agent perceives a norm violation, it can advise the governance system.

 A Reputation Model Based on Testimonies 41

The (centralized) governance system will evaluate the information and, then,
evaluate and store the reputations. Not only the reputation of the agent accused of
violating a norm (defendant agent) can be updated but also the reputation of the agent
that is providing the testimony (witness agent) can be modified.

The governance system is able to provide information about its evaluations of
agents’ reputations. This information can be particularly useful in two different
situations. First, it can be used by agents that want to know the reputation of agents
with whom they have never interacted. This is important since we are considering
open multi-agent systems where agents enter and leave frequently. Second, such
centralized evaluation can also be used to help agents evaluating the reputation of
others. Agents that have not been interacting with other agents for a certain period of
time store old reputation values of their partners. These reputations may or may not
correspond to their current behaviour. Since the centralized reputation system stores
up-to-date agents’ reputation, this information can be used to update the old
reputation values.

3.1 Evaluating Defendants’ Reputation

The reputation subsystem evaluates agents reputations based on the verdicts provided
by the judgement subsystem. The judgement subsystem informs the reputation
subsystems of the verdicts and the testimonies by indicating the witnesses, the
defendants and the norm violations. When the defendants are condemned by the
judgement subsystem, their reputations are updated according to the norms that they
have violated. The more important the norm, the greater the influence it will exert on
the agent’s reputation. Each norm must stipulate how the reputation of the agent
should be modified if it is violated by the agent. This information is called the power
of the norm. The power of a norm can vary from 0, for norms that do not influence the
agent’s reputation, to 1 for norms that strongly influence the agent’s reputation when
violated.

Since we assume that the judgement subsystem deals with uncertainty, the
reputation subsystem must also consider this when evaluating the reputation of the
agents. The reputations of two agents considered guilty of violating the same norm
cannot be evaluated in the same way if the judgement subsystem is more certain of
the guilt of one agent than another. The same norm cannot influence the reputation of
two agents in the same way when one is considered 90% guilty and the other 51%
guilty of violating the norm. Therefore, the reputation subsystem applies the
percentage of blame informed by the judgement subsystem to the power of the norms.
On one hand, when the judgement subsystem is quite sure that the agent is guilty its
reputation is strongly influenced by the power of the violated norm. On the other
hand, when the judgement subsystem is not so sure about the violation of the norm
the agent’s reputation is not so strongly influenced by the power of the norm.
Expression (1) evaluates the influence of the violated norm ni on the reputation of
agent aj by considering the power of the norm and the percentage of blame.

defRepInf(aj,ni) = normPower(ni) * blamePercentage(aj, ni) (1)

42 J. de S.P. Guedes, V. Torres da Silva, and C.J.P. de Lucena

The influence of a violated norm on an agent’s reputation may change over the
agent lifecycle. Frequently, recently violated norms have greater influence on the
reputation of an agent than norms violated in the past. In order to overcome this issue,
we propose to take into account the time during which a norm will influence the agent
reputation. The information about the time during which the norm will influence the
agent’s reputation must be part of the norm specification. This information is used to
estimate the remaining days during which the norm violation will influence the
reputation. Thus, recently violated norms will strongly influence the reputations of
agents, and norms violated in the past will have less influence the reputations or will
not influence the reputation at all, if the time has expired. Expression (2) evaluates the
influence of norm ni on the reputation of agent aj by considering the power of the
norm, the percentage of blame and the number of days of impact or influence
remaining. Expression (2) shows that the agent’s reputation will automatically
improve over time as the remainingDays attribute declines.

defRepInf(aj,ni)=normPower(ni)*blamePercentage(aj, ni)*remainingDays(aj,ni)

 totalTime(ni) – passedDays(aj,ni)
where remainingDays(aj,ni) = --

 totalTime (ni)

(2)

Although a norm violation may no longer be influencing the reputation of an agent,
the information about the violation can still be stored by the reputation subsystem.
This is important when considering repeat behaviour, i.e., relapses. The influence of a
norm violation on the reputation of an agent may increase in case of relapses. The
relapse factor varies from 1 (representing no relapse at all) to a value near zero
(representing many relapses) according to the importance of the norm for the system.
Note that the result value must not exceed the maximum value of the norm power that
is 1.

normPowerr(ni) = normPower(ni) * (1/relapse(ni))

but 0 <= normPowerr(ni) <= 1

 (3)

The influence of a norm violation on the reputation of an agent may decrease in
case of confession. If the agent confesses, the power of the norm is decreased.
Equation (4) modifies the power of the norm by considering confession. This factor
may vary according to the importance of the norm. The more important is the norm,
the less influence this factor will have on the reputation of the agent.

normPowerrc(ni) = normPowerr(ni) * confession(ni) (4)

To evaluate the reputation of a defendant agent it is necessary to consider all the
norms that the agent has violated. Its reputation is evaluated by putting together all the
partial influences provided by each violation, as stated in equation (5). Equation (6)
provides the defendant reputation by combining all of the partial influences. It shows
the reputation of a defendant agent aj by considering that it has violated k norms. Note
that it may be the case that the defendant’s reputation is equal to zero if the sum of its

 A Reputation Model Based on Testimonies 43

partial influences is equal to (or greater than) one. It may also be the case that the
defendant’s reputation is equal to 1 if its reputation is no longer being influenced by
past violations. Thus, the reputation values vary from 1 to 0 and we consider
reputations greater than 0.5 good and less than (or equal to) 0.5 bad reputations.

defRepInf(aj, ni)=normPowerrc(ni) *blamePercentage(aj,ni) *remainingDays(aj,ni) (5)

defendantRep(aj)=1–
0<i<=k[defRepInf(aj,ni)], if 0<i<=k[defRepInf(aj,ni)] <= 1

1 , if 0<i<=k [defRepInf(aj,,ni)] > 1

 (6)

3.2 Evaluating Witnesses’ Reputation

In case the defendant agents are absolved by the judgement subsystem, the reputation
of the defendant agent is not modified. It is the reputation of the witness agent that
should diminished, since it has made an unfounded accusation. The witness’
reputation is also evaluated using the power of the norm. However, the norm violation
itself is usually considered more dangerous than accusing another of a violation.
Therefore, we have defined a factor for adapting the power of the norm for witnesses
that make false statements. This factor, called the witness factor, must be less than 1
but greater than (or equal to) 0 in order to diminish the power of the norm. Equation
(7) modifies the power of the norm by taking into account agent relapses and
untruthful witnesses.

normPowerrw(ni) = normPowerr(ni) * witnessFactor(ni)

but 0 <= normPowerrw(ni) <= 1
(7)

Equation (9) evaluates the reputation of the witness agent aj by considering that it
has made false statements about k norm violations. It combines the partial influences
of inaccurate information it has told that are evaluated according to equation (8).

witRepInf(aj, ni)=normPowerrw(ni) *blamePercentage(aj,ni) *remainingDays(aj,ni) (8)

witnessRep(aj)=1–
0<i<=k[witRepInf(aj,ni)], if 0<i<=k[witRepInf(aj,ni)] <= 1

 1 , if 0<i<=k [witRepInf(aj,,ni)] > 1

 (9)

3.3 Analyzing the Equations for Evaluating Reputations

The equations used by the reputation subsystem to evaluate the agents’ reputation are
based on the practices in Brazilian criminal law. The terms used in those equations are
related to some of the variables considered by Brazilian criminal code in judging a
crime. Note that our goal is not to fully represent Brazilian criminal law in our model.
Our intentions are to show that some of the variables used in Brazilian law can be
helpful in evaluating agents’ reputations.

44 J. de S.P. Guedes, V. Torres da Silva, and C.J.P. de Lucena

In Brazilian criminal law, the minimum and maximum penalties that a defendant
can receive are determined by the kind of crime being judged. Serious crimes have
substantial penalties and simple crimes have small penalties. In the case of the
reputation subsystem, each norm states how important the norm is and how much a
violation of the norm will influence the reputation of the agent. This influence is
defined by the term normPower. Important norms have higher normPower than
simple norms (equation 1). In addition, the norm also states how long the agent’s
reputation would be influenced by the norm. This information is represented by the
term totalTime (equation 2).

Since the crimes determine a wide range of penalties, the penalties are fixed
according to criteria such as the defendant’s culpability. Culpability represents the
degree to which the defendant is responsible - blame. In our model, the culpability of
the agent is represented by the blamePercentage (equation 1). This percentage is
provided by the judgement system after judging the violation. It states the degree to
which the defendant agent is culpable of violating the norm.

After establishing the penalty, the judge can also apply aggravating and
extenuating circumstances to increase or decrease the penalty. In the case of a relapse,
the penalty can be increased and in the case of confession the penalty can be
decreased. As in criminal law, the reputation subsystem also uses information about
relapse (equation 3) and confession to influence the agent reputation (equation 4).
Table 1 states the 5 terms used in the equations and the relationship between them and
the variables used in the criminal law.

Table 1. Terms of the equations

Criminal Law Reputation System Contribution to the
Agent Reputation

normPower decrease minimum and
maximum penalties totalTime decrease
culpability blamePercentage decrease
relapse relapse decrease
confession confession increase

The five mentioned terms are the ones used to evaluate the reputation of a

dependent agent. In order to group these terms, we have defined equation 5. Since we
are dealing with terms whose values can vary from 0 to 1, like percentages, the
simplest operator used to group those terms is multiplicity. Equation 5 should be used
for each violated norm. This equation states how each violation will influence the
agent reputation. Equation 6 is used to combine all the violations by simply summing
them and subtracting from 1, which is the maximum value for an agent’s reputation.

To evaluate the reputation of a witness agent that provided false testimony, we
have defined the term witnessFactor (also defined by the norm) that reduces the
influence a norm has in the reputation of the agent. From our perspective, the
violation of a norm should be more severely punished than false testimony. Equations
8 and 9 are similar to 5 and 6, respectively.

 A Reputation Model Based on Testimonies 45

3.4 Reputation Types

Trust and reputation are context dependent [9]. If we trust a person when he is driving
a car this does not mean that we trust him to pilot an airplane. In addition, if we trust a
taxi driver when driving in New York it does not mean that we will trust him when he
gives information about a New York address.

In order to take into account the context while evaluating the reputation of agents, we
consider the context from two perspectives: the role played by the agent, and the service
being provided. A person may have a good reputation as a taxi driver but a terrible
reputation as a pilot. Moreover, although a person has a very good reputation driving his
taxi, he may have such a good one when giving information about addresses.

To deal with the distinct contexts, we defined three different kinds of reputations:
local reputation, role reputation and norm reputation. The local reputation of an
agent, equation (10), is the one indicated by the average of the results provided by (6)
and (9). An agent’s local reputation takes into account all norm violations and all
false testimonies in a given organization Orgn.

localRepOrgn(aj) = [defendantRepOrgn(aj) + witnessRepOrgn(aj)] / 2 (10)

Role reputations only consider norms that were violated while playing a specified
role or false testimonies that were made while playing this role. Our proposed
reputation model is capable of identifying social structures and evaluating the
reputation of the agents according to those structures. For each role played, the agent
has an associated role reputation. The equation used to evaluate a role reputation is
similar to the one used for local reputations, but here we consider only the norms
violated while the agent is playing a given role r, as depicted in equation (11). By
using the information provided by role reputations it is possible to discover if the
agent can be trusted to play a role. For instance, it is possible to know if the reputation
of an agent is good while considering to pilot airplanes.

roleRep(aj
r) = [defendantRep(aj

r) + witnessRep(aj
r)] / 2 (11)

Norm reputations focus on the violation of a norm and on the false testimonies
provided while considering a norm. Norm reputations are independent of the role being
played. For each system norm, agents have one norm reputation that is evaluated by the
average of equations (5) and (8) as illustrated in equation (12). Ni is the norm being
considered. By using the information provided by norm reputations it is possible to
know if the agent can be trusted to provide a service. It is possible to know it a taxi
driver can be trusted while providing information about the New York addresses.

normRep(aj, ni) = [defRepInf(aj,ni) + witRepInf(aj,ni)] / 2 (12)

3.5 Combining Agent Reputations

As stated above, we assume that large-scale multi-agent systems are composed of sets
of organizations grouped in a hierarchy structure. In such systems, an organization
can define several sub-organizations but a sub-organization can only be part of one

46 J. de S.P. Guedes, V. Torres da Silva, and C.J.P. de Lucena

super-organization. Each organization defines its own norms that must be obeyed by
agents playing roles in it and also by agents playing roles in any of its sub-
organizations. Norms defined in organizations are also valid in their sub-
organizations. Moreover, a norm defined in a sub-organization cannot contradict a
norm defined in its super-organization. Norms of sub-organizations can only be more
restrictive than norms of their super-organizations.

Figure 1 illustrates norms defined at different levels of an organization hierarchy.
Norms 1, 2, 3 and 4 are defined in the first level of the hierarchy represented by
organization Org 1. These four norms must be obeyed not only by agents playing
roles in Org 1 but also by agents playing roles in all its sub-organizations, i.e., Org
1.1, Org1.2 and Org 1.2.1. Norm 5 illustrates that sub-organizations can define their
own norms. Norms 6, 7, 8 and 9 exemplifies that sub-organizations can refine norms
defined in their super-organizations. As a consequence, agents playing roles in Org
1.2 must obey in fact norms 1, 7, 3 and 8.

2

6 7

4

5

Org1

Org1.1 Org1.2

Org1.2.1

1 3

8

9

2

6 7

4

5

Org1

Org1.1 Org1.2

Org1.2.1

1 3

8

9

Fig. 2. Organization hierarchy

The reputations of the agents are evaluated according to the norms violated in the
organizations where they are playing roles. The three reputation kinds defined in
Section 3.3 (local, role and norm reputations) are used to evaluate the reputations of
the agents in each organization. Each organization evaluates the three reputation types
considering its own norms and the norms defined in their super-organizations. These
reputations do not include the violations performed in their sub-organizations. In
order to consider those violations while evaluating the reputation of an agent, three
others reputation types are available: (i) globalRepOrgx(aj) represents the average of the
reputations evaluated in Orgx and in all its sub-organizations, as stated in equation
(13); (ii) globalRoleRepOrgx(aj

r) represents the average of the reputations evaluated
while the agent is playing a given role in Orgx and in all its sub-organizations (if it is
the case), as depicted in equation (14); and (iii) globalNormRepOrgx(aj, ni) represents
the average of the reputations evaluated according to the violation of a given norm in
Orgx and the same norm1 in all its sub-organizations, as stated in equation (15). For
organizations that do not have sub-organizations, for instance Org 1.1, the global
reputations are equal to the local reputations, as depicted in equations (16, 17 and 18).

globalRepOrgx(aj) = { localRepOrgx(aj) + [∑0<m<=nglobalRepOrgm(aj) / i] } / 2 (13)

globalRoleRepOrgx(aj
r) = {roleRepOrgx(aj

r) + [∑0<m<=nglobalRoleRepOrgm(aj
r) /i]}/2 (14)

1 Such norm is of course a norm defined in Orgm or in its (super-…)super-organization.

 A Reputation Model Based on Testimonies 47

globalNormRepOrgx(aj,ni) = { normRepOrgx(aj,ni) +
 [∑0<m<=n globalNormRepOrgm(aj,ni) / i]}/2 (15)

globalRepOrgx(aj) = localRepOrgx(aj)

globalRoleRepOrgx(aj) = roleRepOrgx(aj)

globalNormRepOrgx(aj, ni) = normRepOrgx(aj, ni)

(16)

(17)

(18)

Norms defined in organizations that are not in the same hierarchy do not influence
the reputation of agents playing roles in those organizations. For instance, while
evaluating the reputation of an agent in Org 1.2 the violations that this agent may
have done in Org 1.1 do not influence its reputation in Org 1.2 but will influence its
reputation in the Org 1 point of view.

4 Case Study: Cargo Consolidation and Transportation

To illustrate the use of reputation subsystems, in this section we present some aspects
of the cargo consolidation and transportation system. This example is used to
demonstrate the evaluation of agents’ reputations according to violations of three
norms from the perspective of two different organizations.

Cargo consolidation is the act of grouping together small shipments of goods (often
from different shippers) into a larger unique unit that is sent to a single destination
point (and often to different consignees), in order to obtain reduced shipping rate.
Importers and exporters that want to ship small cargos may look for consolidators
agents that provide cargo consolidation services to ship their goods.

An open multi-agent system approach is entirely adequate for developing
applications on this domain because such applications mostly involve interactions
between different autonomous partners playing different roles in order to accomplish
similar objectives. This approach may also provide support for the automation of the
negotiation between the agents looking for reducing the prices and the delivery time.
In addition, such applications are particular, governed by several rules that are used to
regulate the behaviour of the heterogeneous and independently designed entities that
reinforce the open characteristic of the systems. Since these rules are adequately
modeled as norms in governance multi-agent systems, we will use the cargo
consolidation and transportation system to illustrate our reputation model.

In this business, exporters and importers frequently use standardized contracts called
Incoterms (International Commercial Terms) [7]. Those contracts establish a set of
norms that determine the obligations of the involved parties. In addition, a cargo and
consolidation system is divided into several subsystems that deal with its different
categories. Table 2 illustrates some of the norms defined in the (main) system
(independently of any category) and in two different subsystems (Org 1.1 and 1.2). In
Org 1.1 the importers are responsible for contracting the transports (or consolidators)
and in Org 1.2 the ones responsible for contracting the transports are the exporters.

48 J. de S.P. Guedes, V. Torres da Silva, and C.J.P. de Lucena

Table 2. Norms defined in the contacts

Organization / Norms Ref
Norm

Norm
Power

Total
Time

Org1 – Cargo Consolidation and Transportation
01. Consolidator needs to deliver the cargo to the importer(s) at the
determined location and by the established deadline

 1.0 60

02. Exporter(s) need(s) to deliver the cargo to the consolidator at
the determined location and by the established deadline 0.5 30

Org1.1 – Importers responsibility
03. Exporter(s) need(s) to deliver the cargo to the consolidator at
the cargo terminal and by the established deadline

2 0.5 30

04. Importer(s) is(are) responsible for contracting the consolidator 0.2 10
Org1.2 – Exporters responsibility
03. Exporter(s) need(s) to deliver the cargo to the consolidator at
the cargo terminal and by the established deadline

2 0.5 30

05. Exporter(s) is(are) responsible for contracting the consolidator 0.5 30

By analyzing the above norms we can see that both Org 1.1 and Org 1.2 specializes
norm 2 while defining norm 3. Figure 2 depicts such specialization.

Fig. 3. Specialization of the norm 2 while defining norm 3

On the one hand, in negotiations where importers are responsible for contracting
the consolidators, the agents play roles in Org 1.1 and obey norms 1, 3 and 4. On the
other hand, when the exporters are responsible for contract the consolidator, the
agents play roles in Org 1.2 and obey norms 1, 3 and 5.

Suppose that agent abc has violated norm 3 while playing role in Org 1.1 and in
Org 1,2, and has also violated norm 5 while in Org 1.2. Table 3 shows the details of
such violations. We will use this example to evaluate: (i) the global reputation of
agent abc in the point of view of Org 1.2, (ii) the global reputation of agent abc in
the point of view the main organization Org 1, and (iii) the norm reputation of agent
abc by considering norm 3 and the Org 1 point of view. Those reputations are
evaluated in the same day of the last violation, 25/09/2006.

 A Reputation Model Based on Testimonies 49

Table 3. Norms Violations

organization Violation
date

agent Role Violated
norm

Blame % Relapse confession

Org1.1 20/09/06 abc@platform1.1 exporter 3 100 1 False

Org1.2 24/09/06 abc@platform1.2 exporter 3 100 1 False

Org1.2 25/09/06 abc@platform1.2 exporter 5 80 1 True (0,3)

4.1 The Global Reputation of an Agent from the Point of View of a Sub-
Organization

In this section we will evaluate the reputation of agent abc in the point of view of the
organization 1.2. Since Org 1.2 does not have sub-organizations, the global and local
reputations of the agents playing role in Org 1.2 are the same. In addition, since agent
abc has never told a lie in Org 1.2, its witnessRep is equal to 1 and, thus, its
globalRep1.2 only depends on its defendantRep1.2.

globalRepOrg1.2(abc) = localRepOrg1.2(abc) = [defendantRepOrg1.2(abc) + 1] / 2

defendantRepOrg1.2(abc) = 1- [defRepInfOrg1.2(abc,n3) + defRepInfOrg1.2(abc,n5)]

i) defRepInfOrg1.2(abc,n3) = normPowerrc(n3)*blamePercentage(abc,n3)*
 remainingDays(abc,n3)

normPowerrc(n3) = normPower(n3)* (1/relapse(n3))*confession(n3) = 0,5*(1/1)*1=0,5

remainingDays(abc,n3) = [totalTime (n3) - passedDays(abc,n3) / totalTime (n3)]

 = 29 / 30 = 0,96

defRepInfOrg1.2(abc,n3) = 0,5 * 1 * 0,96 = 0,48

ii) normPowerrc(n5) = normPower(n5) * (1/relapse(n5)) * confession(n5)

 = 0,5*(1/1)*0,3=0,15

remainingDays(abc,n5) = [totalTime(n5) - passedDays(abc,n5) / totalTime(n5)]

 = 30 / 30 = 1

defRepInfOrg1.2(abc,n5) = 0,15 * 0,8 * 1 = 0,12

iii) defendantRepOrg1.2(abc) = 1 - [defRepInfOrg1.2(abc,n3) + defRepInfOrg1.2(abc,n5)]

= 1 - [0,48 + 0,12] = 0,4

iv) globalRepOrg1.2(abc) = [defendantRepOrg1.2(abc) + 1] / 2 = [0,4 + 1] / 2 = 0,7

4.2 The Global Reputation of Agent from the Point of View the of Main
Organization

The global reputation of abc in the point of view of Org 1 (the main organization) is
equal to the average of the global reputations of abc in Org 1.1 and in Org 1.2 plus the

50 J. de S.P. Guedes, V. Torres da Silva, and C.J.P. de Lucena

local reputation of agent abc in Org 1. Since abc has not violated any norm in Org 1,
its local reputation is equal to 1.

globalRepOrg1(abc) = { 1+ [globalRepOrg1.1(abc) + globalRepOrg1.2(abc)] / 2 } / 2

globalRepOrg1.1(abc) = [(1 – defRepInfOrg1.1(abc,n3)) + 1] / 2

= [(1 – 0,41) +1] / 2 = 0,79

globalRepOrg1.2(abc) = 0,7

globalRepOrg1(abc) = { 1 + [0,79 + 0,7] /2 } / 2 { 1 + 0,74 } / 2 = 0,87

4.3 The Global Norm Reputation of an Agent

In order to evaluate the global norm reputation of an agent it is necessary not only to
choose an agent but also a norm. In this section we will evaluate the reputation of
agent abc while considering norm 3. The reputation of agent abc considering only the
violations of norm 3 is evaluated through the average of the violations of norm 3
while the agent was playing roles in Org 1.1 and in Org 1.2.

globalNormRepOrg1(abc,n3) = [normRepOrg1.1(abc,n3) + normRepOrg1.2(abc,n3)] / 2

globalNormRepOrg1(abc,n3) = [0,79 + 0,74] / 2 = 0,76

By using the agents reputation it is possible to know, for instance, (i) if someone
can trust a given exporter while negotiating cargos in categories where the export is
responsible for contracting the consolidator by analyzing the globalRepOrg1.2(exporter)
that provides the reputation of the exporter in an organization what deals with this
negotiation category and (ii) if the exporter usually delivers the cargo to the
consolidator at the cargo terminal by the established deadline by analyzing the
globalNormRep(exporter, n3) since n3 describes this restriction.

5 Related Work

Centralized reputation systems used by eBay[4], Amazon Auctions [2] and Sporas
[15] were developed in order to inform buyers about the performance of sellers in
previous negotiations. Such systems represent the sellers’ performance by attributing
to each seller a single global reputation value. The system receives from buyers their
personal evaluations about the performance of the sellers during the interactions. The
system combines this information to update the reputation of the sellers.

The main differences between our centralized approach and those are:

i. The reputations provided by the centralized system are not biased by the
agents’ point of view. The centralized system does not receive the evaluations made
by one agent about the performance of its partner. Our centralized reputation system
receives testimonies about norm violations. The judgement subsystem [11] judges
these testimonies and advises the reputation subsystem of their veracity. The
reputation subsystem uses the verdict provided by the judgement subsystem to update
the reputation of the sellers.

 A Reputation Model Based on Testimonies 51

ii. The system can provide different reputations for each agent according to
different contexts. Three distinct contexts have been defined, so far: global, norm and
role context. These different reputations help agents to anticipate the behaviour of
agents in different situations.

iii. Our approach provides the possibility of grouping the agents in several sub-
systems that can together provide a more stable basis of support for the evaluation of
the reputations.

As stated before, our reputation model is a hybrid one. To implement the
decentralized reputation part any published decentralized reputation model can be
used. The implementation of the decentralized reputation part does not affect the
centralized one. In decentralized models such as [1], FIRE [6], Regret [9,10], and
[13,14] agents are endowed with the capacity to evaluate the interactions and to store
then individually. In such models the agents themselves use different information
sources to evaluate the trust and reputation of others. Socio-cognitive models such as
[3] where trust is considered an agent mental state can also be used to implement the
decentralized subsystem.

The most important advantage of our approach is the use of a centralized
reputation mechanism, implemented by the organizations, together with the
decentralized one. The organizations can provide trustful and unbiased agents’
reputations that are accessible by any system agent. This is extremely important when
considering two situations:

i. Agents that want to know the reputation of other agents with whom they have
had no previous interaction.

ii. Agents that want to update the reputation of partners with whom they have not
interacted for long time.

In both cases agents can use the reputations provided by the centralized system.
Based on theses reputations, an agent can decide if it wishes to interact with another
agent or not.

6 Conclusions and Future Work

The most important characteristics of the centralized reputation system presented in
this paper as part of a hybrid reputation mechanism are:

i. It is based on testimonies about norm violations. It considers uncertainty while
evaluating the agents’ reputations and these reputations are not biased by the agents’
point of view.

ii. The reputations of agents are influenced by the norms they have violated.
Different norms influence the reputation of the agents in different ways.

iii. Three different reputation contexts are defined: global, norm and role context.
iv. It considers relapses and the duration of norm influences on the agent’s

reputation.

Currently, when an agent has a reputation equal to 1.0, three completely different
conclusions can be reached: the agent has already entered the system, the agent has
never violated a norm or the norms violated by the agent are no longer influencing its
reputation. The centralized model should be revised in order to differentiate these
situations.

52 J. de S.P. Guedes, V. Torres da Silva, and C.J.P. de Lucena

In order to improve our approach it is also necessary to apply it to real case
scenarios and analyze the impact of the reputations provided by the centralized
system in the evaluations done by the agents about the reputation of their partners.

References

1. Abdul-Rahman, A., Hailes, S.: Supporting Trust in Virtual Communities. In: Proceedings
of the 33rd Hawaii International Conference on System Sciences, vol. 6 (2000)

2. Amazon Site. World Wide Web (2006), http://www.amazon.com
3. Castelfranchi, C., Falcone, R.: Social Trust: A Cognitive Approach. In: Castelfranchi, C.,

Tan, Y. (eds.) Trust and Deception in Virtual Societies, pp. 55–90. Kluwer Academic
Publishers, Dordrecht (2001)

4. eBay Site. World Wide Web (2006), http://www.ebay.com
5. Grandison, T., Sloman, M.: A Survey of Trust in Internet Applications. IEEE

Communications Surveys & Tutorials 3(4) (2000)
6. Huynh, T.D., Jennings, N.R., Shadbolt, N.R.: FIRE: An Integrated Trust and Reputation

Model for Open Multi-Agent Systems. In: Proceedings of the 16th European Conference
on Artificial Intelligence (ECAI), pp. 18–22 (2004)

7. Incoterms Site. World Wide Web (2006), http://incoterms.atspace.com/index.html
8. Resnick, P., Zeckhauser, R., Friedman, E., Kuwabara, K.: Reputation Systems.

Communications of ACM 43(12), 45–48 (2000)
9. Sabater, J.: Trust and Reputation for Agent Societies. PhD thesis, Universitat Autonoma de

Barcelona (UAB) (2003)
10. Sabater, J., Sierra, C.: Reputation and Social Network Analysis in Multi-Agent Systems.

In: Falcone, R., Barber, S., Korba, L., Singh, M.P. (eds.) AAMAS 2002. LNCS (LNAI),
vol. 2631, pp. 475–482. Springer, Heidelberg (2003)

11. Silva, V., Lucena, C.: Governance in Multi-Agent Systems Based on Witnesses. Pontifical
Catholic University of Rio de Janeiro (PUC-Rio). Rio de Janeiro - Brazil (2005)

12. Skogsrud, H., Benatallah, B., Casati, F.: Model-Driven Trust Negotiation for Web
Services. IEEE Internet Computing 7(6), 45–52 (2003)

13. Yu, B., Singh, M.P.: Distributed Reputation Management for Electronic Commerce.
Computational Intelligence 18(4), 535–549 (2002)

14. Yu, B., Singh, M.P.: An Evidential Model of Distributed Reputation Management. In:
Proceedings of First International Joint Conference on Autonomous Agents and Multi-
Agent Systems, vol. 1, pp. 294–301 (2002)

15. Zacharia, G., Maes, P.: Trust management through reputation mechanisms. Applied
Artificial Intelligence 14(9), 881–908 (2000)

Towards Agent-Based Scenario Development

for Strategic Decision Support

Maarten Mensonides1, Bob Huisman2, and Virginia Dignum1

1 ICS, Utrecht University, The Netherlands
maartenmensonides@gmail.com, virginia@cs.uu.nl
2 Strategic Development, NedTrain, The Netherlands

b.huisman@nedtrain.nl

Abstract. Scenario planning is a method for learning about the future
by understanding the nature and impact of the most uncertain and im-
portant driving forces affecting that future. However, most scenarios, be-
ing mostly stories, lack validation, dynamism and fail to acknowledge all
relations between actors, activities and resources. In this paper, we pro-
pose an agent-based model for scenario development that tackles these
problems by specifying scenarios as agent organizations which makes pos-
sible the representation of the global organization strategy, and global
goals together with the objectives and requirements of different stake-
holders. As a concrete example of agent-based scenario planning, the
OperA model for agent organizations is used to create a model scenario
for NedTrain, a rolling stock maintenance provider in the Netherlands.

1 Introduction

The purpose of strategy is to create a good fit between the organization and its
business environment. As organizations seek to adapt in a world of rapid change,
strategic planning becomes increasingly dynamic and complex. This usually hap-
pens in situations that are uncertain and ambiguous, which means that there
are multiple equally possible futures to be reckoned with. Strategic planning
typically involves establishing or validating an organizational vision identifying
corporate values, stake-holders and their goals, objectives and dependencies, and
perhaps specifying critical success factors or tactics in support of the goals and
objectives. It may also include identification of processes and value chain links
or business processes for business process re-engineering [17].

Scenario planning is a method for learning about the future by understanding
the nature and impact of the most uncertain and important driving forces affect-
ing that future. It has been advocated as a suitable way to describe views of the
future within the context of a business organization [21]. Scenario planning is a
group process that encourages knowledge exchange and development of mutual
deeper understanding of central issues important to the organization. The goal
is to craft a number of diverging stories by extrapolating uncertain and heav-
ily influencing driving forces. Scenarios are powerful planning tools precisely
because the future is unpredictable. Unlike traditional forecasting or market

M. Kolp et al. (Eds.): AOIS 2006, LNAI 4898, pp. 53–72, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

54 M. Mensonides, B. Huisman, and V. Dignum

research, scenarios present alternative images instead of extrapolating current
trends from the present. Nevertheless, classical scenario planning suffers from
some pitfalls, one of which being the fact that scenario planning lacks validation
tools that enable the evaluation of the proposed scenario, and therefore it will
be difficult to reach hard business decisions based solely on scenarios, unless the
scenarios are underpinned by facts and sound analysis [7]. Furthermore, being
mostly stories, scenarios often lack a clear internal logic (credibility), dynamism,
and fail to acknowledge all relations between heterogenous actors, activities and
resources [18].

The development of organizational scenarios calls for models, languages and
methodologies to represent interaction, roles and other concepts that character-
ize societies. That is, such models must depart from the global requirements and
objectives, and an organizational view on the environment reflecting the orga-
nizational strategy [10]. Agent models offer an appropriate route for describing
a complex system, by enabling its specification in terms of autonomous com-
ponents and their interactions. Agent-based models are increasingly recognized
as powerful tools for simulating social systems, as they can represent impor-
tant information about the world not easily captured by traditional models [16].
Agent-based models enable to connect the (heterogeneous) micro behaviour of
individual entities to different patterns of macro, or organizational, behaviour.
In the same way as scenarios, agent models can be seen as support tools for
decision making by proving powerful ‘what-if’ images of the future. Agent based
modelling of organizations provides a natural framework for tuning the complex-
ity of the organization and its components: roles, rules, interactions, individual
behaviour, degree of rationality, ability to learn and evolve [1]. Furthermore,
agent models enable the identification of unexpected or hidden complexity that
would never be revealed by traditional scenario planning.

Nevertheless, most traditional agent models are mostly concerned with the
individual agents’ perspectives. Those models mostly assume an individualistic
perspective in which agents are taken as autonomous entities pursuing their own
individual goals based on their own beliefs and capabilities In this perspective,
global behaviour emerges from individual interactions and cannot easily be man-
aged or specified externally. However, in the case of scenario planning (as in the
case of institutions and other formal organizations), the behaviour of the global
system is leading, and structural characteristics of the domain must be consid-
ered and incorporated in the model. Furthermore, agent-based models have the
capability to overcome some of the problems with scenario planning, due to the
ability of agent models to represent dynamics and enable (formal) validation of
systems. That is, the use of agent models enables the generation of meaningful
insights and the evaluation of policies and strategies [5]. From the above consid-
erations, we have identified the following requirements for agent-based scenario
planning and organizational modelling systems [13]:

– Support and direct the analysis of the organizational structure of the domain
in order to determine society norms and facilitation roles

Towards Agent-Based Scenario Development 55

– Include explicit formalisms for the description, construction and control of
the organizational and normative elements of a society (roles, norms and
goals) instead of agent beliefs and states.

– Provide mechanisms to describe the environment of the society and the in-
teractions between agents and the society, and to formalize the expected
outcome of roles in order to verify the overall animation of the society.

– Provide methods and tools to verify whether the design of an agent society
satisfies its design requirements and objectives.

Although the OperA model for agent organizations has not been developed
with a scenario planning application in mind, but it aims at generic organi-
zational modelling, OperA meets the above requirements which have been the
guidelines to its development [10]. As such, we advocate in this paper that OperA
can be used for scenario developement. Using OperA enables the formal speci-
fication and validation of scenarios, which, as described above, lacks is most of
the scenario development approaches.

OperA takes a collectivist view on agent societies that places the global char-
acteristics of the domain in the first place. The framework consists of three
models that make the conceptual separation between organizational and indi-
vidual perspectives possible. The organizational model describes agents societies
in terms of roles, constraints and interactions rules. In this paper, we present
a practical application of OperA as scenario planning tool to the development
of strategy at NedTrain, a rolling stock maintenance provider in the Nether-
lands. OperA is used to develop a scenario for the organization of rolling stock
maintenance and operational services for transportation along a decentralized,
client-oriented view (trains are responsible to determine their status and request
maintenance), replacing the current centralized view (planning based on cen-
trally managed time tables). The agent-based scenario represents and evaluates
the desired, possible future, situation and is used to guide the discussion around
strategic decision making and adoption of change.

The paper is organized as follows: in section 2 we briefly introduce the OperA
model for agent organizations, which is the basis for scenario development
method proposed in section 3. Section 4 provides an overview of NedTrain and
the goals this company has for the project. Section 5 presents the agent-based
model for the rolling stock maintenance scenario. Current and future research on
the evaluation of the model and its implications for the decision making process
at Nedtrain are described in section 6. In section 7 we briefly introduces related
work in MAS modelling and the specific features of Agent Organization design.
Finally, we conclude and present some directions for future work in section 8.

2 The OperA Model

The OperA model for agent organizations enables the specification of organi-
zational requirements and objectives, and at the same time allows participants
to have the freedom to act according to their own capabilities and demands.

56 M. Mensonides, B. Huisman, and V. Dignum

OperA considers agent organization models as having at least two description
levels. At the abstract level, which can be seen as a receipt for collective activ-
ity, organizations are described in terms of roles, their dependencies and groups,
interactions and global norms and communication requirements. The concrete
level is a possible instantiation of the abstract organization, by populating it with
real agents that play the roles and realize interactions [22], [19]. Organizational
design starts from the identification of business strategy, stakeholders, their rela-
tionships, goals and requirements and results in a comprehensive (agent) organi-
zation model including organizational roles, interactions and planning rules, that
fulfil the requirements set by the business strategy. Organizational instantiation
is the process that accepts an abstract organization model and a set of agents,
and resources and generates a concrete organization by assigning responsibilities
and organizational goals to each agent. Organizational roles and responsibili-
ties represent general, long-term guidelines while operational control involves
specific short-term agreements among agents to perform specific activities for
specific time periods [20].

The OperA framework consists of three interrelated models. The organiza-
tional structure of the society, as intended by the organization designers, is
described in the Organizational Model (OM). The OM specifies an agent
society in terms of four structures: social, interaction, normative and commu-
nicative. The social structure specifies objectives of the society, its roles and the
model that governs coordination. The interaction structure gives a partial order
of the scene scripts that specify the intended interactions between roles. Inter-
action scene scripts are specified in terms of landmarks, which describe how a
result should be achieved, that is, describe the states that must be part of any
protocol that implements the interaction scene in the Interaction Model. Soci-
ety norms and regulations are specified in the normative structure, expressed
in terms of role and interaction norms. Finally, the communicative structure
specifies the ontologies for description of domain concepts and communication
illocutions. The way interaction occurs in a society depends on the aims and
characteristics of the application, and determines the way roles are related to
each other, and how role goals and norms are ’passed’ between related roles.
For example, in a hierarchical society, goals of a parent role are shared with its
children by delegation, while in a market society, different participants bid to
the realization of a goal of another role.

The Social Model (SM) specifies the interaction scenes that describe the
possibilities for negotiation of role enactment by agents joining the organization.
As a result, the agent population of an OM is specified in the (SM) in terms
of social contracts that make explicit the commitments regulating the enact-
ment of roles by individual agents. Note that whereas the social structure in the
OM describe organizational requirements and expectations concerning roles and
their dependencies, in the social model, the requirements and capabilities of the
specific individual agents that populate the organization are taken in account.
Social contracts describe the capabilities and responsibilities of an agent within
the society, in a way that includes the desires of the agent. The use of contracts

Towards Agent-Based Scenario Development 57

to describe the activity of the system allows on the one hand for flexibility in the
balance between organizational aims and agent desires and on the other hand
for verification of the outcome of the system. For example, consider the case of
two different agents fulfilling the role of Program Committee member: while one
will accept the number of papers intended by the organization, the other may
negotiate to review less papers or to get an extension on the reviewing deadline.
Both fulfil the same role as described in the OM, but their specific contracts
fixed in the SM describe their individual differences.

Finally, given an agent population for a society, the Interaction Model
(IM) specifies possible interaction protocols between agents that implement the
functionalities described in scene scripts in the OM. After all models have been
specified, the characteristics and requirements of the society can be incorporated
in the implemented software agents themselves. Agents will thus contain enough
information and capabilities to interact with others according to the society
specification.

Table 1. Overview of OperA methodology

 Step Description Result
Coordination
Level

Identifies organization’s
main characteristics:
purpose, relation forms

Stakeholders, facilitation roles,
coordination requirements

Environment
Level

Analysis of expected
external behavior of
system

operational roles, use cases,
normative requirements

OM

Behavior
Level

Design of internal
behavior of system

Role structure, interaction
structure, norms, roles, scripts

SM Population
Level

Design of enactment
negotiation protocols

Agent entrance scripts,
Role enactment contracts

IM Interaction
Level

Design of interaction
negotiation protocols

Scene script protocols,
Interaction contracts

A generic methodology to analyze a given domain and determine the type
and structure of an application domain resulting in a OperA agent organization
model is described in [11]. The methodology provides generic facilitation and in-
teraction frameworks for agent societies that implement the functionality derived
from the co-ordination model applicable to the problem domain. Standard soci-
ety types such as market, hierarchy and network, can be used as starting point
for development and can be extended where needed and determine the basic
norms and facilitation roles necessary for the society. These coordination models
describe the different types of roles that can be identified in the society and issues
such as communication forms, desired social order and co-operation possibilities
between partners. A brief summary of the methodology is given in table 1. In
the next section, we describe how we have adapted the OperA methodology to
the development of scenario planning models. The resulting adapted method-
ology has been used to develop a scenario planning model to support strategic
decisions at NedTrain, described in sections 4 and 6.

58 M. Mensonides, B. Huisman, and V. Dignum

3 A Methodology for Scenario Modelling

Multi-agent models have been only sparsely used for decision support and policy-
making. However, the ability of agent models to connect heterogeneous indi-
vidual behaviour to different patterns of collective behaviour, makes agent or-
ganizations particularly useful to model uncertain situations, such as scenarios,
involving different parties with different expectations and needs [16]. Traditional
policy analysis aims at efficiency or optimality of strategy given environment
conditions.

Scenarios represent interaction among stakeholders and incorporate their dif-
ferent perceptions and requirements. Furthermore, in order to be legitimized in
their eyes, the development method must ensure the participation of all stake-
holders such that the resulting model integrates their particular perceptions,
capabilities and requirements. The very nature of scenario planning, suggests
that agent organizations incorporating intelligent adaptive agents that model
the different stakeholders, are valuable to predict, understand and interpret on
the one hand the collective behaviour of the organization as described by the
scenario, and on the other hand the consequences of the change to the different
component system and entities that form the organization [4].

Work on agent-based models of organization scenarios is very much in the
exploratory phase and there has been so far hardly any methodological or tool
support. Methodologies to support the structured development of scenarios are
needed, that (1) enable the systematic analysis and incorporation of different
perspectives, (2) assess the robustness of insight to the particular way agents
and interactions are represented, and (3) guides and interprets results achieved
[6]. Due to its strong foundation on organizational perspective, that exactly
enables this incorporation of different perspectives, the OperA model is appro-
priate for the development of organizational models [11]. Therefore, the OperA
methodology and framework was chosen for the construction of Organizational
Model for NedTrain. Several approaches have been proposed to support scenario
development. By making a correspondence between an existing scenario design
approach and the OperA methodology, we are able to use the formalization and
validation capabilities of OperA to scenario development, which is one of the as-
pects that lack in traditional scenario development approaches. In this project,
we use a methodology derived from the environmental simulation field [2] and
adapted to the OperA framework, consisting of three phases:

1. Model construction: during this phase analysis of the environment, stake-
holders, perceptions and business strategies takes place, resulting in an
OperA Organizational Model (OM).

2. Model validation: different agents representing possible stakeholder at-
titudes and requirements can specified to enact roles specified in the OM,
resulting in different possible Social Models (SM) implementing different sce-
narios. This enables a thorough evaluation of the OM by the stakeholders,
e.g. using role playing approaches, that enable each stakeholder to ‘enact’ its

Towards Agent-Based Scenario Development 59

role in the system, facilitating discussion on the impact and completeness of
the model.

3. Scenario animation: corresponds to the implementation of an Interaction
Model corresponding to each of the different possible SMs. Using computa-
tional simulation techniques, these scenarios can be animate to illustrate the
activity and effects of the different scenarios.

The challenge of the first phase is to identify stakeholders, requirements
and interactions, describe a coherent possible future that incorporates strategic
changes with individual considerations. The resulting OM model for NedTrain
is described in section 5. An important result of phases 2 and 3 above is the gen-
eration of common understanding of the future organizational forms (resulting
from the chosen scenario) and realize consensus about its consequences for cur-
rent activities. Besides its objectives of evaluation and refinement of the model,
the second phase also aims at generating consensus among the stakeholders and
ensuring their understanding and acceptance of the strategic changes. Finally,
during the third phase, the effects of different ways of realizing strategy are gen-
erated and analyzed. In section 6, we look at how phases 2 and 3 are currently
taking place at NedTrain.

4 The NedTrain Situation

NedTrain is a rolling stock Maintenance Provider, owned by Dutch Rail (NS).
It runs 2 workshops, 5 depots and 25 service locations around the Netherlands,
employing more than 3000 people. Clients include national, local and interna-
tional Train Operators. Originating from a state owned monopolist, NedTrain
now faces strong competition and has to adapt itself to the requirements of the
European market. Changes in political and business environment made clear
that the current organizational model must be reconsidered. Moving from state
owned monopolists, railway companies are increasingly becoming competitors
over a shared infrastructure and maintenance services.

At the same time the technology used for railway transportation is changing
rapidly. Modern trains are composed of subsystems requiring various mainte-
nance strategies. Some components are maintained at regular intervals based
upon distance or time. Other components are only inspected at regular inter-
vals, while repair or replacement depends on the individual technical condition.
The second group asks for continuous automated monitoring and dynamic job
scheduling to prevent in-service failures (failure during operations) and to min-
imize means of production. Since traditional railways are optimized for the first
group of subsystems, the existence of the second disturbs smooth logistics fun-
damentally. Especially in the Netherlands it puts high pressure on rolling stock
availability and costs, due to the geographic structure of the network and the
locations of maintenance facilities.

The challenges faced by NedTrain can be summarized as follows:

– From rigid operations driven by timetables to dynamic scheduling of opera-
tional services and maintenance jobs triggered by events.

60 M. Mensonides, B. Huisman, and V. Dignum

– From homogeneous processes for a single client to heterogeneous processes
to comply with a number of different contracts.

– From top down planning and scheduling to dynamic negotiation between
companies with conflicting interests.

– From rigid maintenance job allocation based on depot planning to dynamic
negotiation based on train-centered automatic evaluation of technical condi-
tion

Operators uses different trains for their services. Trains and other rolling stock
has been delivered by various manufacturers over time and represents different
generations of technology. So Fleet management has to deal with sub-fleets.
For older sub-fleets Operators bear full responsibility and can decide upon use
and maintenance independently. In contrast, manufacturers guarantee reliability,
availability and costs in more recent contracts. In return operators are obliged to
comply with the maintenance plans which are supplied by manufacturers. Since
sub-fleets may be contracted in different ways, Fleet management and mainte-
nance providers have to deal with rather heterogeneous maintenance processes.
This introduces an extra level of required coordination, in order to manage the
various sub-fleets according to their contracts within the overall interest of the
operator. Furthermore, operators must respect the agreements made (usually)
with their country’s government about the transportation, fixed in a Service
Level Agreement (SLA), which includes agreements about travelling frequen-
cies, rolling stock types, number of seats that should be available, etc.

Facing the complexity of managing dynamically (sub)fleets of individual trains
according to condition based maintenance, different contracts and conflicting
interests between Operators, NedTrain initiated a study to analyze future sce-
nario’s and to support strategic decision making using the concept of agent
organizations. In particular, the project aims at supporting fleet management
solving the question of how to allocate individual trains to operational services
and to maintenance. The project reported in this paper is part of this plan,
and was meant to evaluate the possibilities of MAS technology to solve these
challenges.

NedTrain operates as a Maintenance Provider, receiving orders from Fleet
Managers serving different Operators. In some cases NedTrain provides all main-
tenance for an Operator. In other cases NedTrain is one of the Maintenance
Providers that is contracted by an Operator. Individual Train Units aim for an
optimal mixture of reliability, availability and costs. Information from different
sources as inspection staff, train borne control systems and track-side sensors,
enables a Train Unit to determine its technical condition. However, extra coordi-
nation is necessary in order to assure the interests of the Fleet Manager. Usually
the Fleet Manager has some kind of SLA with the Operator to deliver a daily
set of trains and so is usually called Daily Seat Provider. That is, the behav-
iour of the group of intelligent agents representing trains, besides determining
the best solution for each individual train, must also comply with the SLA of
the Fleet Manager. Proposals for maintenance plans are then determined by the
Train Unit through intelligent reasoning aiming at in-service failures prevention.

Towards Agent-Based Scenario Development 61

Given these plans of proposed maintenance tasks assigned to individual trains,
the availability of means of production at the Maintenance Provider and the
expected flow of the transportation process, optimal depot assignment and job
scheduling will be calculated. Due to the nature of operations and the charac-
teristics of rolling stock, scheduling becomes fairly dynamic.

The envisioned model of operation is not deterministic as its results are depen-
dent on independent discrete decisions (by Fleet Management and Maintenance
Provider) with a stochastic system (the set of Train Units). In this situation,
statistic decision support is not usable. A simulation model is however a good
analysis tool as it enables to represent operational management decisions. More-
over, an agent-based simulation model was chosen due to its possibilities to rep-
resent and relate heterogeneous, autonomous entities with different information
and decision rules, to the global behaviour of the overall system [16]. In addition,
agent models are able to represent the capabilities, requirements and objectives
of different stakeholders, and provide as such a means for discussion and valida-
tion. In the following, we describe the (simplified) agent-based simulation model
developed at NedTrain.

5 Organizational Model

As discussed previously, the aim of this project is to develop and specify reliable
operation scenarios, resulting for the envisioned strategic changes at NedTrain.
The project so far has focused on the development of an agent organization
model representing the organization that results from the strategic changes. This
organizational model is to be used in later phases of the project as a basis for
the generation of different operational scenarios (this is described in section 6.
To facilitate the study, a simplified operation model of the company was used.
In this model, the rail network consists of two main national lines with their own
depot each, a local line and an international line. Both national lines are serviced
by commuter and intercity trains, operated by the same Fleet Manager of a
single Operator (Operator1). Both depots belong to NedTrain. One of the depots
has also contracted all maintenance of a second, local Operator (Operator2).
The other depot may be called by a third, international Operator (Operator3)
who also has the opportunity to use another, competing Maintenance Provider
(MP2). This geographically simplified model of operation is depicted in figure 1
where Train types A, B, C or D are different train types served by the Depots.

We have used the OperA methodology [11] to analyze the NedTrain situation
and design the organization model, OM, as described in the first phase of the
scenario modelling process presented in section 3. Facilitation aspects of the case
are analyzed at Coordination Level by considering the nature of the main activi-
ties within the domain. The objectives of the participants in the NedTrain agent
organization reflect the interests of the stakeholders in the real world, which leads
to complex decision making for maintenance and operational services scheduling
because of two facts: (1) differences between interests of stakeholders, and (2)
stakeholders that are not willing to share private information. Another reason

62 M. Mensonides, B. Huisman, and V. Dignum

Operator 1

Operator 2

Operator 3

Train type A, B

Train type C

Train type D

Depot NedTrain
Train type A, B, C

Depot MP 2
Train type D

Depot NedTrain
Train type A, B, D

Local line

National line

National line

Intermational
line

Fig. 1. Simplified model of operation

for complex decision making results from the increasing need of dynamically an-
ticipating to the environment. The NedTrain case is characterized by two main
goals: (1) scheduling maintenance, and (2) allocating trains to operational ser-
vices. Scheduling of maintenance is defined by two different types of contracts:
Fixed Maintenance Volume, defining in advance the daily volume of mainte-
nance an Operator can make use of; and Maintenance On Demand contracts,
defining the way parties can negotiate about the volume of maintenance on a
daily basis.

With respect to relation forms, activities related to scheduling fixed main-
tenance volume and allocating the trains to operational services are organized
in a hierarchy reflecting the traditional paradigm of railway organizations, that
enable a global view on fleet level on the risk for in-service failures. However,
negotiation about maintenance on demand follows a network structure reflect-
ing the collaboration aspect between equal partners. Facilitation requirements
resulting from these relation forms are the need for negotiation features together
with a global control on fleet reliability. This is necessary to be able to allocate
the most reliable trains to operational services and to determine the required
maintenance on fleet level. The negotiation feature is needed to let parties ne-
gotiate about maintenance jobs. The following facilitation roles result from the
Coordination Level analysis:

– Notary: It keeps track of a collaboration contract between agents.
– Monitor: It is responsible for controlling and supporting the contract.
– Fleet Management: responsible for a global view on allocation and fleet

risk.

At Environment Level, the analysis of stakeholders and their requirements
leads to the identification of roles describing the expected functionality of the
society. The social structure results from those roles and their dependencies. For
this case, stakeholders and their corresponding roles are as follows. The social
structure describing roles and their dependencies is depicted in figure 2.

Towards Agent-Based Scenario Development 63

Request risk /
maintenance required

Request
risk

Request risk /
maintenance

required

DSM FMVM

MODM

TU

Monitor Notary

PU

Apply
sanction

Apply
sanction

Register
contractRegister

contract

Assign
service

Request
cancellation costs

Inform
cancellation

Inform
cancellation

Inform
cancellation

Assign
maintenance

Negotiate
maintenance
on demand

Appoint

Perform
maintenance

Inform need
maintenance
on demand

Facilitation layer

Operation layer

Fig. 2. Social structure

– Train Unit (TU): Its objective is to maximize reliability against minimal
costs.

– Daily Seat Management (DSM): Its objective is to allocate Train Units
to operational services according to the contracted requirements and to min-
imize the overall risk for in-service failures.

– Maintenance Management: Its objective is to maximize fleet reliability
within the limits of the contracted availability by assigning maintenance jobs
to Train Units. It is represented by two roles:

• Fixed Maintenance Volume Management (FMVM): Uses the
Fixed Maintenance Volume contract.

• Maintenance On Demand Management (MODM): Negotiates
with the Planning Unit to contract vacant maintenance capacity.

– Fleet Management (which encloses Daily Seat Management and Mainte-
nance Management): Its objective is to supply Train Units to operational
services according to the contracted requirements and against minimal costs.

– Operator: Its objective is to maximize profitability by providing operational
services with respect to the SLA with the Government.

64 M. Mensonides, B. Huisman, and V. Dignum

– Maintenance Provider: Its objective is to maximize profitability by main-
taining Train Units and to maximize Fleet Management satisfaction by of-
fering high quality, cost effectiveness and reliability.

– Planning Unit (PU) (which is part of a Maintenance Provider): Its ob-
jective is to maximize Maintenance Provider earnings by assigning vacant
maintenance capacity to requests by Maintenance On Demand Management,
taking into account the scheduled use of the contracted Fixed Maintenance
Volume.

– Government (not included in this model): Its objective is to offer sufficient
public transportation against minimal costs.

Finally, at Behavior Level the internal behavior of the organization is designed.
For each role, a role description is specified that identifies the activities and ser-
vices necessary to achieve its (social) objectives. In general, a role is described in
terms of its objectives, sub-objectives, norms and rights. As an example, in table
2, we show the description of the role Maintenance On Demand Management to
clarify the dynamic characteristic of maintenance. MODM serves the Operator
in managing a variable demand for maintenance volume that is not captured
within a fixed maintenance volume contract or managing different offers when
more Maintenance Providers are contracted.

The social structure relates the role definitions to their dependencies. The
dependencies between roles reflect the interactions of roles to realize their ob-
jectives. The dependencies are specified by interaction scenes, which capture a
certain multi-agent dialogic activity [14]. The interaction structure describes the
partial order of interaction scene scripts. Due to space limitations, we are not
able to describe here the full process of constructing the interaction structure.
A more detailed description can be found in [10]. The interaction structure is
depicted in figure 3.

The schedules for maintenance and allocation to operational services are based
on the technical condition of a Train Unit. The Train Unit is able to express
its condition in terms of a risk value for in-service failure (operational risk)
and to determine the required maintenance, both deduced from the technical
condition. Based on this information schedules are created. DSM allocates the
operational services to the Train Units in a hierarchical fashion (where DSM
has control over the assignments) on the basis of the lowest operational risks
and with respect to the operational time table (scene Allocate Services). FMVM
determines which maintenance tasks are scheduled for the entire fleet also on
the basis of a hierarchical relation (scene Assign Fixed Maintenance Volume).
Scheduling maintenance on demand requires negotiating between the PU and
MODM, by which the PU represents the interests of the Maintenance Provider
(increase turnover by extending profitable maintenance volume) and the MODM
represents the interests of the Operator (increase reliability with minimum costs).
This is handled in the network-related interaction scene Negotiate Maintenance
On Demand. The interaction scenes that follow take care of the compliance with
the agreements for the negotiators.

Towards Agent-Based Scenario Development 65

The schedules are created some time in advance. The technical condition of the
Train Units frequently changes. Therefore, schedules are subject to change and
require a dynamic approach. This model includes a rescheduling mechanism. A
new schedule is accepted if the associated costs for cancellation are compensated
by overall better results.

In OperA interaction scenes are specified as scene script descriptions. To study
the example of the MODM in more depth, the interaction scene Negotiate Main-
tenance On Demand is given in table 3. This scene describes the creation of extra
production capacity. It is initiated when the fixed maintenance volume is not suf-
ficient to guarantee a reliable fleet. Alternatively, for the operators that have not
signed contracts in which the maintenance volume is contracted in advance, such
as the international Operator in the example, the scene is initiated to schedule
all maintenance tasks. The negotiation requires a common base to compare the
bids of the different parties (MODM and PU). For this purpose, we introduced a
cost factor. The negotiation mechanism that was chosen for this scene prescribes
the buyer (i.e. the MODM) as the initiator of the negotiation.

Behavior Level design results in the complete Organization Model for the
domain. Due to space limitations, we are not able to present the complete model,
but present examples of relevant role and scene script descriptions. The design of

Table 2. Example of a role: MODM

If parties have made agreements about maintenance

volume then MODM is obliged to do register
agreements with notary
If offer is profitable then MODM is permitted to do
accept offer

If DSM cancels maintenance then MODM is obliged
to do comply with cancellation and determine new
need variable volume

Norms

Decide need for variable maintenance volume
Decide negotiable maintenance tasks

Rights

Determine available Train Units for maintenance
Request maintenance required
Request fixed maintenance volume availability

Determine need for variable maintenance volume
Determine maintenance volume
Request operational risk
Determine profitable tasks
Determine logistics

Determine bidding possibilities
Negotiate volume
Schedule maintenance
Register contract

Sub-
objectives

Maximize fleet reliability by assigning maintenance
jobs to TU by negotiating with PU to contract vacant
maintenance capacity

Objectives

Role: Maintenance On Demand Management

66 M. Mensonides, B. Huisman, and V. Dignum

Request
risk

Request
maintenance

required

Assign fixed
maintenance

volume

Negotiate
maintenance
on demand

Allocate
operational

services

Start

Request
cancellation

costs

Register
agreements

Appoint

Inform
maintenance
cancellation

Perform
maintenance

Apply
sanction

End

Fig. 3. Interaction structure

the Social and Interaction Models are the next steps in the OperA methodology,
corresponding to phases 2 and 3 in the scenario development framework proposed
in section 3. In the following section, we will describe the second and third phases
of the methodology for scenario modelling for the NetTrain case.

6 Model Validation and Animation

According to the scenario development model presented in section 3, the model
construction phase (1) is followed by the phases model validation (2) and scenario
animation (3). The validation phase involves a thorough analysis of the model
and its components. This verification is supported by the formal semantics of
OperA models, which is based on the LCR logic [12]. At the present, we are
working on tools that support the (semi) automatic verification of OperA models,
but for the project reported in this paper, verification has been done by hand.

Furthermore, it is necessary to provide a means to analyze the perceptions and
interactions of the different stakeholders and to convert the envisioned future
into common knowledge and shared goals. The model described in section 5,
was used to promote the awareness of stakeholders for the situation forthcoming
from the strategic changes. Even though, after strategic changes take place, all
stakeholders will profit from the optimal value chain, the outcomes of change
were not clear to the people involved. The model made possible to understand
the complexity of the different roles and of the interactions between them, and
the highly dynamic processes derived from the environment changes.

Role playing games have been proposed to decision making process and strat-
egy change [8]. The role descriptions resulting from the organizational model can

Towards Agent-Based Scenario Development 67

Table 3. Example of a scene script: Negotiate maintenance on demand

If fleetRisk > minimumReliability or fleetAvailability <
minimumAvailability then MODM is obliged to

do start negotiation
If fleetRisk ≤ minimumReliability or fleetAvailability ≥
minimumAvailability then MODM is obliged to
do stop negotiation
If offer is acceptable then obliged to do accept offer

If PU and MODM agreed then PU and MODM is obliged to
do register maintenance

Norms

MODM obtains minimum reliability / availability and

MODM obtains realisation fixed volume and
MODM requests TU for operational risks and
MODM determines need variable volume and
MODM requests available TU for required maintenance
tasks and decrease failure costs and

MODM obtains track hours and maintenance volume for the
maintenance tasks and
MODM obtains logistic costs and
MODM creates list of the most valuable tasks arranged on
ratio and

MODM determines first offer and maximum price for product
and
PU determines minimum price and counteroffer and
PU and MODM negotiate until reached consensus or could

not agree and
MODM negotiates the valuable tasks until
fleetRisk = minimumReliability or
fleetAvailability = minimumAvailability and
MODM is informed about rescheduling and

MODM and PU register maintenance

Patterns

Obtain list of maintenance tasks scheduled by MODM, which
a PU executes for a TU

Results

Planning Unit, Train Unit, Maintenance On Demand
Management

Roles

Scene Script: Negotiate variable volume

support stakeholders to understand their expected future behavior and scope of
action. By analysing their own role and its interactions to other roles, stake-
holder came up with many different possible interaction scenarios. For instance,
from the perspective of a Maintenance Provider, it is important to understand
the difference between scenarios that maximalize fixed volume maintenance, or
maximalize on demand maintenance, or scenarios in which they are free to buy
and sell each others’ maintenance quotes. This will result in different sceanrio in-
stances of the maintenance model described in section 5 by varying the objectives
and plans of the agents that enact the different roles and by negotiating different
ways to realize the interaction scenes. Role enactment negotiation is specified in
OperA as a special interaction scene script that describes the possible negotiable
aspects (such as deadlines, results, capabilities) and generates a social contract
describing the activities of a role enacting agent. As any other scene script, a

68 M. Mensonides, B. Huisman, and V. Dignum

role enactment negotiation script can provide more or less interpretation freedom
to the agents through the level of specification described by its landmarks. For
example, the script for the role enactment negotiation for the Train Unit role en-
ables agents, representing specific trains, to specify contract clauses fixing issues
such as maximum waiting time, preference for depot, and possibility for phased
maintenance (different parts at different moments). Another example, the role
enactment negotiation script for the MODM role (cf. table 2) enables different
agents to use different values for operational risk, profitable tasks, volume, etc.

The different scenario instances generated by the stakeholders evaluation of
their roles is implemented during the third phase of the scenario development
method, scenario animation, in which the agent-based model will be instanti-
ated to represent those different possible situations. We are currently working on
a simulation framework that is able to generate simulations from a given OperA
model instantiation. By allowing populations of agents to negotiate different pa-
rameters, different scenarios are achieved. For instance, a possible scenario aims
at minimizing cost and optimizing maintenance planning, while giving a lower
priority to reliability. That is, what happens if we try to plan maintenance to
optimize the use of depots, if this means that trains will in some cases have to
operate at higher risk levels? Another scenario considers the case in which risk
must be minimized even if this means higher operation costs due to non-optimal
use of depots, or recurse to competitor maintenance providers.

Unpredictability of maintenance jobs to be executed will become manifest as
technical advances enable trains to sense more aspects of their state, and econom-
ical pressures demand longer operation of rolling stock or better allocation of de-
pots. By analyzing the results of the different scenarios, decision makers at Ned-
Train will be able to discuss and measure the effects of different strategic choices
derived from these changes. For instance, if the volume of the Maintenance
Provider’smeans of production equals the average demand by the Fleet Managers,
variations in the volume of maintenance jobs over time result in waiting queues of
rolling stock in front of the depots. Therefore the fleet availability decreases. The
Fleet Management has to choose between two unwanted effects: To accept lower
operational capacity or higher investments in rolling stock. On the other hand,
asking for high fleet availability by Fleet Management can only be answered by
introducing peak capacity of production means at the Maintenance Provider. This
effect is amplified by the growing length of expensive train sets. Capital costs of the
operator and the costs of maintenance are communicating vessels. These are is-
sues represented in the scenario described in section 5. However, the consequences
of this strategic move are difficult to understand and even more to adapt to, which
results in reluctance by different parties to adjust.

7 Related Work on MAS Models

A multi-agent system (MAS) is commonly defined as a system composed of
several agents, capable of mutual interaction. However, the exact nature of the
agents and their interaction can vary greatly across different existing models.

Towards Agent-Based Scenario Development 69

In fact, even if autonomy is commonly accepted as a defining characteristic of
agents, current definitions differ in terms of characteristics such as intelligence,
rationality, sociability or mobility. Furthermore, the organization of a MAS is
also assumed in different ways. Some approaches, see organization as a feature
that should be designed to exhibit specific characteristics, whereas others see
organization as an emergent property of the system. Models of agent systems,
as well of any other (distributed) system, are based on the assumption that
there is a system which behavior and functionality can be controlled, and an
external world (the environment) which is largely uncontrolled. When developing
distributed systems, engineers are faced with two basic types of designs with
respect to interaction between system components and environment. On the
one hand, design can be realized by specifying the individual components and
their possible interactions and on the other hand, models are achieved by fully
specifying the coordination context and the roles of the entities in the domain.
The first design type is the one followed by most existing AOSE (Agent Oriented
Software Engineering) methodologies, resulting in MAS systems composed of
specific agents designed to the purpose of the application on hand. Following
the second type, agent organizations and institutions can be modelled that fully
adhere to certain global objectives and requirements without the need to control
the specific agents in the system. That is, Agent Organization modelling differs
from traditional MAS modelling by integrating organizational and individual
perspectives into one model and enabling dynamic adaptation to organizational
and environment changes [10].

Existing MAS design methodologies such as Tropos [3] or Gaia [23] consider
specific agents as being explicit to be part the model. Design starts therefore from
the analysis of the overall system, while the resulting software consists mainly
(if not exclusively) of the agents, together with a communication (messaging)
infrastructure. The main concepts that are used in these methodologies center
around goals, plans and interaction protocols. Although organizational concepts
like “roles” are used, they have a different meaning in this context. They refer
to specific types of functionalities that can be bundled into agent types. Some of
these methodologies provide a graphical design tool for MAS models and support
semi-automatic generation of agents.

Methodologies for agent organizations, such as OperA [11] or MOISE+ [15]
acknowledge the concept of organization as first class entity. In this context
roles are seen as positions in an organizational structure that can be fulfilled
by agents. Important is the balance between the organizational goal and the
goals of the agents (or global, system goal vs. local goals). OperA clearly dis-
tinguishes between the concept of role (specified in the OM) and the concept
of agent (as a role enacting entity as described in the SM). This enables the
abstraction from specific agents in the model, makes it more relevant for the
development of scenarios and other organizational models. Besides the fact that
OperA models are explicitly geared to the development of agent organizations,
the fact that OperA is funded on a formal representation, presents an advantage
over e.g. Tropos. This formal semantics enable the formal verification of OperA

70 M. Mensonides, B. Huisman, and V. Dignum

models in terms of completeness (e.g. are the specified roles sufficient to
eventually achieve the organizational goals) and liveliness (e.g. successful termi-
nation of interaction scenes)1. Space limitations do not allow us to extend here
the discussion of related work on Agent-oriented Software Engineering frame-
works. Such an extended comparison has been reported in [9].

8 Conclusions

In order to achieve rich scenarios, it is important to be able to represent multiple
and contrasting viewpoints. OperA enables to represent many different popula-
tions of agents for the same organization. Organization being specified in the
OM and different populations in the SM and IM. This means that organization
scenarios can be animated to study instantiations based on different priorities
and capabilities of the stakeholders. For example, the needs and goals of the
Operators (optimal planning of train units) are often in conflict with those of
the Maintenance Provider (constant, well balanced workload at the depots). Fur-
thermore, agent models have proved to be useful tools to involve stakeholders in
a collective design on management plans [16,2].

Atthepresent,wehavefullyspecifiedtheorganizationalmodeloftheagent-based
scenario atNedTrain.Thismodel has increased the awareness of thedifferent stake-
holders to the consequences of the strategic changes taking place, and to lead the
decision-making process, as described in section 6. A follow up to this project will
result in an implemented agent-based scenario simulation system for the model de-
scribed in this paper. In this system, the different visions of the future, can be visu-
alized and analyzed by weighting differently the priorities of each stakeholder.

The results of application of the agent-based scenario planning methodology
at NedTrain demonstrate the validity of the use of agent models as specification
tool for organization systems, as well as a basis for discussion, validation and
acceptation of strategic changes. Future work will concentrate on generalizing the
results obtained at NedTrain to other scenario planing situations. The method
must be further applied to other domains, tested and refined in order to be
able to draw wider conclusions. This project also served as an evaluation of the
possibilities of agent modelling and agent technology for the system needs at
NedTrain. From the experience so far, agent technology will be a likely option at
NedTrain for the support of the implementation of real life planning prototypes.

References

1. Bonabeau, E.: Agent-based modeling: Methods and techniques for simulating hu-
man systems. PNAS 99(3), 7280–7287 (2002)

2. Bousquet, F., et al.: Multi-agent systems and role games: collective learning
processes for ecosystem management. In: Bousquet, F. (ed.) Complexity and
ecosystem management: The theory and practice of multiagent systems, Edward
Elgar, pp. 248–285 (2002)

1 See [10] for the formal semantics of OperA.

Towards Agent-Based Scenario Development 71

3. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos: An
agent-oriented software development methodology. Journal of Autonomous Agents
and Multi-Agent Systems 8, 203–236 (2004)

4. Carley, K., Lee, J., Krackhardt, D.: Destabilizing networks. Connections 24(3),
79–92 (2002)

5. Carley, K.: Computational organization science: a new frontier. PNAS 99(3), 7257–
7262 (2002)

6. Chang, M.-H., Harrington Jr., J.E.: Agent-based models of organizations. Hand-
book of Computational Economics II (2006)

7. Chermack, T.J.: A theoretical model of scenario planning. Human Resource De-
velopment Review 3(4), 301–325 (2004)

8. D’Aquino, P., Le Page, C., Bousquet, F., Bah, A.: Using self-designed role-playing
games and a multi-agent system to empower a local decision-making process for
land use management: The selfcormas experiment in senegal. Journal of Artificial
Societies and Social Simulation 6

9. Dastani, M., Hulstijn, J., Dignum, F., Meyer, J.: Issues in multiagent system de-
velopment. In: Kudenko, D., Kazakov, D., Alonso, E. (eds.) Adaptive Agents and
Multi-Agent Systems II. LNCS (LNAI), vol. 3394, pp. 922–929. Springer, Heidel-
berg (2005)

10. Dignum, V.: A Model for Organizational Interaction: based on Agents, founded in
Logic. SIKS Dissertation Series, -1. Utrecht University, 2004. PhD Thesis (2004)

11. Dignum, V., Dignum, F., Meyer, J.J.: An agent-mediated approach to the support
of knowledge sharing in organizations. Knowledge Engineering Review 19(2), 147–
174 (2004)

12. Dignum, V., Meyer, J.J., Dignum, F., Weigand, H.: Formal specification of inter-
action in agent societies. In: Hinchey, M.G., Rash, J.L., Truszkowski, W.F., Rouff,
C.A., Gordon-Spears, D.F. (eds.) FAABS 2002. LNCS (LNAI), vol. 2699, Springer,
Heidelberg (2003)

13. Dignum, V., Dignum, F.: Modeling agent societies: co-ordination frameworks and
institutions. In: Brazdil, P.B., Jorge, A.M. (eds.) EPIA 2001. LNCS (LNAI),
vol. 2258, pp. 191–204. Springer, Heidelberg (2001)

14. Esteva, M., Padget, J., Sierra, C.: Formalizing a language for institutions and
norms. In: Meyer, J.-J.C., Tambe, M. (eds.) ATAL 2001. LNCS (LNAI), vol. 2333,
Springer, Heidelberg (2002)

15. Hübner, J., Sichman, J., Boissier, O.: S-moise+: A middleware for developing or-
ganised multi-agent systems. In: Boissier, O., Padget, J., Dignum, V., Lindemann,
G., Matson, E., Ossowski, S., Sichman, J.S., Vázquez-Salceda, J. (eds.) Coordi-
nation, Organizations, Institutions, and Norms in Multi-Agent Systems. LNCS
(LNAI), vol. 3913, pp. 64–78. Springer, Heidelberg (2006)

16. Lempert, R.: Agent-based modeling as organizational and public policy simulators.
PNAS 99(3), 7195–7196 (2002)

17. Orwig, R., Chen, H., Nunamaker, J.F.: A multi-agent view of strategic planning
using group support systems and artificial intelligence. Group Decision and Nego-
tiation 5, 37–59 (1996)

18. Schoemaker, P.: Twenty common pitfalls in scenario planning. Learning from the
future: competitive foresight scenarios (1998)

19. Sichman, J., Dignum, V., Castelfranchi, C.: Agent organizations. JBCS 11(3)
(2005)

20. Sims, M., Corkill, D., Lesser, V.: Separating domain and coordination knowledge in
multi-agent organizational design and instantiation. In: Proc. Agent Organizations:
Theory and Practice vol. WS-04-02. AAAI (2004)

72 M. Mensonides, B. Huisman, and V. Dignum

21. van der Heijden, K.: Scenarios, Strategies and the Strategy Process. Nijenrode
University Press, The Netherlands (1997)

22. Vazquez-Salceda, V.J., Dignum, V., Dignum, F.: Organizing multiagent systems.
JAAMAS 11(3), 307–360 (2005)

23. Wooldridge, M., Jennings, N., Kinny, D.: The Gaia methodology for agent-oriented
analysis and design. Journal of Autonomous Agents and Multi-Agent Systems 3(3),
285–312 (2000)

M. Kolp et al. (Eds.): AOIS 2006, LNAI 4898, pp. 73–89, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Preliminary Validation of MOBMAS
(Ontology-Centric Agent Oriented Methodology):

Design of a Peer-to-Peer Information Sharing MAS

Quynh-Nhu Numi Tran1, Ghassan Beydoun2, Graham Low1,
 and Cesar Gonzalez-Perez3

1 School of Information Management and Technology Management,
University of New South Wales, Australia
{g.low,numitran}@unsw.edu.au

2 Faculty of Informatics, University of Wollongong, Australia
beydoun@uow.edu.au

3 Faculty of Information Technology, University of Technology of Sydney, Australia
cesargon@it.uts.edu.au

Abstract. Most existing AOSE methodologies ignore system extensibility, in-
teroperability and reusability issues. Ontologies have been found to play a sig-
nificant role in facilitating interoperability, reusability, MAS development
activities (including MAS analysis and agent knowledge modelling) and MAS
run-time operation (including agent communication and reasoning). However,
most of the existing AOSE methodologies do not provide support for ontology-
based MAS development. In light of this shortcoming of the existing AOSE
work, we have developed MOBMAS – a “Methodology for Ontology-Based
MASs”. In this paper, as part of its ongoing evaluation, we demonstrate
MOBMAS on a peer-to-peer (P2P) community-based information sharing ap-
plication. MOBMAS is used by an experienced software developer, who is not
an author of the methodology.

Keywords: Multi-agent system, methodology, validation.

1 Introduction

Ontologies are an explicit formal specification of a shared conceptualization [1]. They
have been successfully used to enhance extensibility, reusability, interoperability and
verify various products of software development e.g. [2-4]. In Agent-Oriented Soft-
ware Engineering (AOSE), existing methodologies do not implement these important
potentials of ontologies and very few MAS methodologies include ontologies in their
workproducts and processes (as shown in the recent survey of existing AOSE meth-
odologies [5]).

When AOSE methodologies use ontologies, this use tends to be confined to the
early phase of the development (the analysis phase). For example, GRAMO [6] speci-
fies how a domain model that includes goal and role analyses is developed from an
initial ontology. Another example, MASE [7] uses ontologies to mediate the transition

74 Q.-N.N. Tran et al.

between the goal and the task analyses. Our use of ontologies in developing MAS is
perhaps closest to recent work in [8] which recognizes the role of using ontologies for
verification of models during the analysis phase. Outside the analysis phase, ontolo-
gies currently are mainly used to express a common terminology for agent interac-
tions in an MAS e.g. [9].

Towards enhancing reusability and interoperability of MAS components, Tran et
al. [10] proposed a framework that supports the creation of methodologies supporting
and making use of ontologies throughout much of the development lifecycle. To illus-
trate the use of the framework, an ontology based AOSE methodology, MOBMAS – a
“Methodology for Ontology-Based MASs” [11] was instantiated that explicitly and
extensively investigates the diverse roles of ontology in MAS development and pro-
vides support for these roles. It has an ontology-based MAS development process and
ontology-based MAS model definitions. MOBMAS provides support for the follow-
ing key areas of MAS development: analysis, agent internal design, agent interaction
design, organizational design and architecture design. MOBMAS takes advantage of
existing AOSE methodologies, by reusing and enhancing their techniques and model-
ling definitions where appropriate. It endeavours to combine the strengths of the exist-
ing methodologies into one methodological framework [5, 11, 12].

In this paper, we overview MOBMAS [11, 13] and demonstrate its use for a com-
munity-based peer-to-peer (P2P) information sharing application. An experienced
software developer who was not an author of the MOBMAS methodology was its
user. The domain has been chosen for its current importance and it being a common
application area of MAS. The case study shown in this paper is part of a wider com-
parative study to evaluate how various software developers respond to MOBMAS.
After we overview MOBMAS and its use in sections 2 and 3, we conclude the paper
with a discussion of limitations of the current verification of MOBMAS and future
evaluation work to address some of the limitations.

2 MOBMAS Methodology

Using MOBMAS, the MAS development starts with a domain ontology which is
initially used to identify goals and roles of the system to index an appropriate set of
problem solving capabilities from an appropriate existing library of capabilities. Indi-
vidual ontologies corresponding to the knowledge requirements of each capability are
then extracted from the initial common ontology, to provide knowledge representation
and allow reasoning by individual agents. Those ontologies form the basis for an
iterative process to develop a common communication ontology between all agents
and verify the knowledge requirements of chosen capabilities. Individual localised
ontologies may also require incremental refinement during the iterative process. Ap-
propriate ontology mappings are needed between local ontologies and the communi-
cation ontology. The development of MAS using MOBMAS has five activities. Each
focuses on one of the following key area of MAS development: Analysis, Organiza-
tion Design, Agent Internal Design, Agent Interaction Design and Architecture De-
sign (Fig. 1). The development process of MOBMAS is highly iterative. MOBMAS
activities are detailed in this section.

Preliminary Validation of MOBMAS (Ontology-Centric Agent Oriented Methodology) 75

1. Develop System Task Model

2.Analyze organizational
context (optional)

3. Develop Role
Model

4. Develop Ontology Model

5.Identify ontology management role

ANALYSIS

AGENT INTERNAL DESIGN
1.Specify agent class’ belief conceptuali-

zation

2.Specify agent goals

3.Specify events

4.Develop Agent Behaviour
Model

AGENT INTERACTION DESIGN

2.Develop Agent Interaction
Model

1.Select interaction mechanism

MAS ORGANISATION
DESIGN

2.Develop Agent Class
Model

1.Specify organizational structure

3.Specify resources (optional)

4.Extend Ontology Model to include
Resource application ontologies (op-

tional)

4.Instantiate agent classes

3.Specify infrastructure facilities

2.Select agent architecture

1.Identify agent-environment interface
requirements

ARCHITECTURE DESIGN

5.Develop Deployment Diagram

Fig. 1. MOBMAS development process: The solid arrows represent the flow of steps within
and across activities, while the dotted arrows indicate the potential iterative cycles of steps.
Models produced or refined by each step are shown in square brackets.

2.1 Analysis Activity

The Analysis activity aims to form a conception for the target MAS from the domain
ontology and the system requirements, giving a first-cut identification of the roles and
tasks that compose the MAS. This activity consists of the five following steps:

1 – Develop System Task Model: Takes as input specifications of the desirable
functionality of the MAS and constructs a System Task Model showing system tasks,
their functional decomposition, and any conflicts amongst them.

76 Q.-N.N. Tran et al.

2 – Analyze Organizational Context (optional): Examines the human organization
of the MAS and outputs an Organizational Context Model, which describes the exist-
ing structure of the contextual organization via Organization Context Charts.

3 – Develop Role Model: Identifies a set of roles that compose the MAS organiza-
tion. MOBMAS offers various techniques for identifying roles from system tasks and
from the existing organizational structure [11]. The Role Model captures all roles in
the system, their associated tasks, acquaintances between roles and authority relation-
ships governing inter-role acquaintances.

4 – Develop Ontology Model: Identifies and models the required ontologies to
 produce the Application Ontologies . These are basically a synthesis of Domain on-
tologies and Task ontologies that have been specialised to model the application’s
specific knowledge needs. MOBMAS offers some useful techniques for their devel-
opment , although it refers the developers to the literature on ontology engineering for
more support on this task.

5 – Identify Ontology-Management Role: Determines whether the ontology servers
in the MAS will be freely accessed by agents, or controlled exclusively by a dedicated
ontology manager.

The Role Model should be developed in a highly iterative manner with the System
Task Model, given the association between roles, role tasks and system tasks. The
Ontology Model is used to refine and validate those models (and vice versa). It also
specifies the ontological mappings between the MAS Application Ontologies.

2.2 MAS Organization Design

This activity refines the organizational structure of the target MAS and identifies a set
of agent classes composing the MAS. If the MAS is a heterogeneous system that
contains non-agent resources, these are also identified and their applications concep-
tualized. Four steps in this activity are as follows:

1 – Specify MAS Organizational Structure: Refines the preliminary organizational
structure of MAS previously shaped by the Analysis Activity, by selecting an appro-
priate organizational style for the MAS (e.g. peer-to-peer or hierarchical), determining
the authority relationships between roles. Two basic types of authority relationships
are “peer” and “control”. The Role Model should be updated to show these authority
relationships between roles, and to include any new roles and/or inter-role acquaint-
ances (e.g. Mediator or Broker role).

2 – Develop Agent Class Model: Identifies agent classes from roles. Generally,
roles are assigned to agent classes via one-to-one mappings, but multiple roles can be
mapped onto a single agent class for convenience, taking into account modularity and
efficiency considerations. The developer should determine at design time whether the
assignment of roles to agent classes is dynamic or static; that is, whether instances of
an agent class may change their roles at run-time or not. In this sense, MOBMAS
recognizes implicitly the notion of ‘participation’ that ROADMAP makes explicit
[14]. The Agent Class Model is depicted by Agent Class Diagrams and an Agent
Relationship Diagram. The former defines each agent class in terms of its internal
constructs (e.g. beliefs, goals, events), while the latter shows the acquaintances be-
tween agent classes, instantiation cardinality of each agent class, and the resources
wrapped by agent classes (if any). Both Agent Class Diagrams and Agent Relation-
ship Diagrams are developed in an incremental manner.

Preliminary Validation of MOBMAS (Ontology-Centric Agent Oriented Methodology) 77

 3 – Specify Resources (optional): Identifies and models non-agent resources that
provide application-specific information and/or services to the agents, e.g. informa-
tion sources or legacy systems. The output of this step is a Resource Model that de-
scribes each resource via a Resource Diagram. Two basic dimensions for describing a
resource are its type and its Resource Application Ontology. The Resource Applica-
tion Ontology is integrated in the Application Ontology developed during the Analy-
sis Phase. The Agent Relationship Diagram should also be updated to show newly
identified resources and their connections with wrapper agent classes.

4 – Revisit the Ontology Model: This updates, if required, the Ontology Model to
add ontologies that conceptualize the resources’ data, domains and/or services. Gen-
erally, each resource should be conceptualized by a separate Resource Application
Ontology. The developer should also specify the mappings between Resource Appli-
cation Ontologies and relevant MAS Application Ontologies, so as to enable the
integration of these resources into the MAS application, as well as to support the
interoperability between heterogeneous resources.

2.3 Agent Internal Design

For each agent class, this activity specifies belief conceptualization, agent goals,
events, plan templates and reactive rules. It consists of four steps:

1 – Specify Agent Class’ Belief Conceptualization: Identifies which (part of) appli-
cation ontologies in the Ontology Model are needed by an agent class to conceptual-
ize its run-time beliefs. These ontologies are those providing the necessary and
relevant vocabulary for an agent instance to formulate and interpret factual knowledge
about its world at run-time. The developer should update the Agent Class Diagram of
each agent class to show the name of these application ontologies.

2 – Specify Agent Goals: Identifies the states of the world that an agent class aims
to achieve or satisfy. Agent goals can be derived from role tasks as specified in the
Role Model. Different agent classes may pursue an identical goal if they are mutually
in charge of a joint role task (c-f. Section 2.2). The Agent Class Diagram of each
agent class should be updated to list the identified goals.

3 – Specify Events: Identifies significant occurrences in the environment that
agents need to respond to at run-time. These include events that activate agent goals
and/or affect the agent’s course of actions in fulfilling the agent goals. The Agent
Class Diagram of each agent class should be updated to list the identified events.

4 – Develop Agent Behaviour Model: Specifies how each agent class behaves to
achieve or satisfy each agent goal. We consider two behavioural style of agents: First
is planning behaviour, where Agent Plan Templates are used to define the input in-
formation required by built-in planners to formulate actual plans for agents at run-
time. These input information include: the target agent goal, potential sub-agent goals
(if any), actions, events that may affect the agent’s course of actions, commitment
strategy and conflict resolution strategy. The second is reactive behaviour where Rule
Specifications should be documented to specify the “if-then” rules linking the events
and the required actions. Note that an agent class may adopt hybrid behaviour. The
resulted Agent Behaviour Model should be validated for consistency against the On-
tology Model and vice versa.

78 Q.-N.N. Tran et al.

2.4 Agent Interaction Design

This activity models the interactions between agent instances, by selecting a suitable
interaction mechanism for the target MAS and modelling the interactions. It has two
steps: firstly, to decide upon which interaction mechanism is best suited to the target
MAS. Two basic mechanisms considered by MOBMAS are “direct” (where agents
directly exchange ACL messages following interaction protocols) and “indirect”
(where agents indirectly exchange tuples). MOBMAS offers guidelines for selecting
between these two mechanisms. Secondly, to define how agents interact depending on
the selected interaction mechanism. In the direct interaction scheme, the developer
should specify the interaction protocols governing the ACL message exchanges be-
tween agent instances. The Agent Interaction Model in this case is represented by a
set of Interaction Protocol Diagrams. For the indirect interaction scheme, the devel-
oper should model the exchanges of tuples between agents and the shared tuplespace.
In both cases, the developer should validate the Agent Interaction Model against the
Ontology Model and vice versa, because the datatypes of all arguments in the ACL
messages or tuples must be equivalent to the ontological concepts defined in the
application ontologies. This requirement helps to ensure that the semantics of all in-
formation conveyed in ACL messages or tuples are consistently understood by the
interacting agents. The Agent Class Model should also be checked to ensure that all
communicating agent classes share the same application ontologies that govern their
interactions. Lastly, the Agent Relationship Diagram should be updated to show de-
scriptive information about each interaction pathway between agent classes.

2.5 Architecture Design

This activity deals with various design issues relating to agent architecture and MAS
architecture. Its five steps produce different notational components that constitute the
Architecture Model Kind. They are as follows:

1 – Identify Agent-Environment Interface Requirements: Investigates the require-
ments and characteristics of the agent perception, effect and communication mecha-
nisms, so as to facilitate implementation of MAS. The requirements should be listed
in an Agent-Environment Interface Requirement Specification.

2 – Select Agent Architecture: Decides upon the most appropriate architecture(s)
for agents in the MAS. We suggest various factors to be considered when making the
decision, e.g. the desirable style of agent behaviour, style of control, knowledge rep-
resentation mechanism or scalability requirements. The selected agent architecture(s)
should be graphically modelled in an Agent Architecture Diagram.

3 – Specify MAS Infrastructure Facilities: Identifies system components that are
needed to provide system-specific services. All necessary infrastructure facilities
should be listed in an Infrastructure Facility Specification.

4 – Instantiate Agent Classes: Determines the cardinality of instances in each agent
class. This cardinality should be shown as an annotation next to the agent class name
in the Agent Relationship Diagram.

5 – Develop MAS Deployment Diagram: Describes how the logical MAS architec-
ture can be actuated in the operational environment. A MAS Deployment Diagram

Preliminary Validation of MOBMAS (Ontology-Centric Agent Oriented Methodology) 79

should be constructed to show the physical agent platforms, nodes, agent instances at
each node and their acquaintances, and connections between nodes.

3 Community-Based P2P Information Sharing MAS

In this section, we illustrate the use of MOBMAS on a P2P information sharing appli-
cation by an experienced system developer. The application and its specifications are
based on Klampanos and Jose [15] and Mine et al.’s [16] conception of a P2P infor-
mation sharing architecture.

3.1 Application Description

Each human user is represented by an agent in the network to act on his/her behalf.
This agent locates files and responds to queries by other similar agents. The collection
of all these agents and agents assisting them in their tasks form the P2P community
based searching MAS (Fig. 2). An agent representing the human user has access to a
knowledge base containing electronic files that the user is willing to share with other
users. Each file is identified by its title and type (e.g. HTML, pdf, music or video).

Train
spotters

IS
re-

search-

Cinema
Goers

Fig. 2. The P2P Multi agent system is the collection of the agent assistants and any supporting
specialized agents

As agents interact on behalf of their users, communities of interest begin to
emerge. These communities may overlap (Fig. 3). A human user may belong to more
than one community, for instance an IS researcher may also be a cinema goer. Agents
develop an awareness of the communities to which users belong and use this aware-
ness to fulfil their users’ search requests efficiently and effectively, by interacting
with the agents in the communities most likely to be able to serve their requests.

80 Q.-N.N. Tran et al.

Cinema goers

IS researchers Train spotters

Fig. 3. A human user may belong to more than one community

A human user can pose a query to request files. Each query is made up of one or
more keywords. The P2P system is responsible for locating sites where files matching
the queries may reside, based on the behaviour of the users at those sites (as repre-
sented by their agents). The mediation between the human users is always done by the
system and is initiated by the agent representing the human making the request. The
agent of the like-minded user responds either by providing details about the files it
can supply, or by refusing the service. When all responses are received, the agent
combines and refines the results to compose a list of files that satisfy the query. The
agent initiating the query can then select which file(s) it wants to download to the
human it represents and initiates the file transfer process. After a successful transfer
the knowledge base, located where the query was made, is updated to contain the
received file(s).

For all agents involved in processing the query, their knowledge base is also up-
dated with1 additional information reflecting the interests of the agent that initiated
the query. This information is used in future queries. That is, as agents interact they
develop awareness of the files possessed by their peers and which peers may be inter-
ested in the files that they themselves have.

At each node in the network, each user-agent keeps a record of its history of infor-
mation sharing. The history contains two records: one of the past queries that it made
on behalf of the human user and its respective responders, and one of the past queries
received and their respective agent senders (acting on behalf of other human users).
The former needs to be updated every time the user-agent receives a result list from
the system, while the latter requires updating every time the user-agent replies to a
query sent by the system. The history is used to produce short lists of candidate nodes
for future queries, by calculating the similarity between the current query and a past
query [16]. If no nodes can be short-listed, or if all candidate user-agents cannot pro-
vide the service required, the agent-user broadcasts the query to a wider circle of user-
agents in the community, in order to identify new candidate providers. In a fully
evolved P2P system, agents may use their knowledge about other users interests to
request/negotiate for information from their peers when they do not know who has the
files of interest. Any new providers are eventually added to the history, thereby ex-
panding the user-agent’s contact circle.

Preliminary Validation of MOBMAS (Ontology-Centric Agent Oriented Methodology) 81

This strategy of information sharing can be applied to any domain. We limit our
analysis to an application for the Movies domain. This simplifies the requirements of
the system by focusing on one community, and details of how a community emerges
or connect to another community (using a global ontology) is left out for future exten-
sion. Accordingly, the information to be shared amongst user-agents is assumed to
only be movie-related files, such as movie trailers, movie posters or movie web pages.

3.2 P2P Analysis

The first step of the Analysis activity was to identify the required system tasks and
their functional decomposition (Figs. 4 and 5). The optional step in the Analysis activ-
ity to investigate the MAS organizational context is omitted in this application. A
preliminary Role Model was developed to show tentative roles in the system and their
tentative acquaintances. The developer identified roles by grouping closely-related
system tasks in the System Task Model. For example, he assigned all the tasks deal-
ing with interactions between the human user and his representing agents to a “User
Interface” role (Fig. 8). The tasks relating to user query processing and file transfer-
ring (including file downloading and uploading) were allocated to three separate
roles, “Searcher”, “Downloader” and “FileServer”. The tasks relating to maintaining
transfer histories are implicitly handled by the roles “Downloader” and “FileServer”.

Process download requests

Display candidate files Accept file selection Download file

Accept user
query

Obtain result

Display result
list

Obtain partial lists Compose result

Make download
request Receive file

Compile user
query

Determine target
servers

Send queries to
servers

Receive query
results

Generate down-
load request

Send download
request to servers

Receive file from
servers

Notify user with
reception sum-

mary

Fig. 4. System Task Diagram #1

Process upload request

Provide file details upon
receiving an upload query

Send file upon receiving an
upload request

Fig. 5. System Task Diagram #2

82 Q.-N.N. Tran et al.

An Ontology Model was then constructed to define the necessary application on-
tologies for the MAS. Only MAS Application Ontologies were initially examined, an
ontology for conceptualising the information sharing domain is identified (Fig. 7).
Resource Ontologies were identified later in the Organization Design activity (see
Section 3.3) including an ontology for Movies information sharing (Fig. 6).

in-

1

1

has genre

1 1showing atMovie
movieName
actor
producer
director
musicdirector
screenplay

duration

Cinema
cinemaName
address
telephonenumber

Genre

Action Horror Thriller Comedy Musical
Trailer

Title
Length

0

1

Fig. 6. Movie Ontology (from www.cse.dmu.ac.uk/~monika/Pages/ Ontolgies/)

1..*

1..*
1..*1..*

1

provided-by

1..*

UserQuery
QueryID, Time.receiv

Keyword

File
Filename, Filetype

Provider
Agent-name, Address

1..*
file-description

1..*1..*

ResultList

result of
0..*

History

1..*

1..*

Enquirer
Agent-name, Address

Fig. 7. Information Sharing Ontology

All agents in the system are expected to know about the two MAS Application On-
tologies and they are not expected to change, so the developer decided that they
should be stored at publicly-accessed ontology servers and can be accessed by all
agents. No particular new role or agents was needed to manage and control these
servers.

3.3 P2P MAS Organization Design

The first step in this activity was to refine the preliminary Role Model developed in
Section 3.2 to specify authority relationships between roles (Fig. 8). Agent classes
were then identified from roles. The Developer associated two roles “Searcher” and
“Downloader” into one single agent class “Client”.

Preliminary Validation of MOBMAS (Ontology-Centric Agent Oriented Methodology) 83

Role UserInterfaceManager
Tasks [Accept user query, Display result
list, Accept file selection, Notify user with
reception summary]

Role Searcher
Tasks [Compile user query, Determine
target servers, Send queries to servers,
Receive query results, Compose result list]

Role Downloader
Tasks [Download file, Generate download
request, Send download request to servers,
Receive file from server]

Role FileServer
Tasks [Provide file details upon receiving an upload
query, Send file upon receiving an upload request]

Fig. 8. Role Diagram, all roles defined are in peer-to-peer relationships

Remaining roles were assigned to respective agent classes via one-to-one map-
pings. A preliminary Agent Relationship Diagram was constructed to show the tenta-
tive agent classes, their roles and their interaction pathways (Fig. 9). The Agent Class
Diagram for each agent class was mostly empty at this stage, since no internal details
were yet apparent. Note that the explicit separation of the “Client” and “Server”
agent classes in the solution helped to clearly model that each user in the P2P network
can be both a client and a server. Each user can be represented by a “Client” agent at
one time, and by a “Server” agent some other times.

agent class UserInterfaceManager /
UserInterfaceManager role

agent class Client/ Searcher role,
Downloader role

agent class Server/
FileServer role

Fig. 9. Preliminary Agent Relationship

Non-agent software resources were identified: knowledge sources containing
movie-related electronic files, e.g. web servers of HTTP files, directories of multi-
media files. Each knowledge source needed to be managed and controlled by a spe-
cialized wrapper agent which provides an interface to the resource when requested by
other agents in the system. Accordingly, the Role Model was extended to add a
“Wrapper” role, and the Agent Class Model was updated to show the newly identi-
fied “Wrapper” agent class (Fig. 15).

The ontology conceptualizing each knowledge source was defined and thereafter
added to the Ontology Model. Fig. 10 presents a Resource Application ontology for a
knowledge source containing movie trailer files (which is one of the knowledge
sources in the system) [and possibly many other domain ontologies for information

84 Q.-N.N. Tran et al.

sharing in a fully fledged deployed P2P system]. Mappings between concepts of this
ontology (named “MovieTrailer Resource Ontology”) and the “Movie Ontology”
were also specified. In Fig. 10, the “Movie Ontology” is re-shown in grey (c.f. Fig. 6).
Relationships annotated with predicate “equivalent” represent the semantic mappings
between the concepts of “MovieTrailer Resource Ontology” and those of “Movie
Ontology”. Note that other knowledge sources in the system would have their own
resource ontologies and would be mapped differently to the “Movie Ontology”.

equivalent

equivalent

equivalent

equivalent
equivalent

equivalent

equivalent

1
*

1

1
*

1
*

Movie
Title
Type
Length
Summary

Producer Details
Actor Name
Producer Name
Director Name
Music Director Name
Screenplay Producer

TrailerFile
Name
Duration

1

1
*

1

has_genre

1
*

1
*

showing_at Cinema
cinemaName
address
telephonenumber
email

Genre

Action

Horror

Thriller

Comedy

Musical

Trailer
Title
Length

0

Movie
movieName
duration
synopsis
actor
producer
director
musicdirector
screenplay

equivalent

Fig. 10. MovieTrailer Resource Ontology

3.4 P2P Agent Internal Design

The internal design of each agent class begins with the identification of ontologies
conceptualizing the agent’s run-time beliefs. Agent goals are identified directly from
role tasks. However, while role tasks were specified using imperatives, agent goals
were specified as “something is achieved”. For instance, the task “Provide file details
upon receiving an upload query” of the role “FileServer” (Fig. 8) revealed an agent
goal “File details are provided upon receiving an upload query”.

Events affecting agents’ courses of actions were also identified. The Agent Class
Model, particularly the Agent Class Diagrams, was then updated to show the listing of

Preliminary Validation of MOBMAS (Ontology-Centric Agent Oriented Methodology) 85

belief conceptualization, agent goals and events for each agent class. Fig. 11 illus-
trates the updated Agent Class Diagram for the “Server” agent class.

agent class Server / FileServer role

belief conceptualization
Movie Ontology

Information Sharing Ontology
MovieTrailer Resource Ontology

agent-goals
File details are provided upon receiving an upload query

File is sent upon receiving an upload request
Events

Reception of upload query
Reception of upload request

Fig. 11. Agent Class Diagram for the “Server” agent class

An Agent Behaviour Model was developed to define plan templates and reactive
rules for each agent class. The developer considered both planning and reactive be-
haviour for each agent class, depending on the target agent goal. For example, the
“Server” agent class required planning behaviour to fulfil the agent goal “File details
are provided upon receiving an upload query”. The Agent Plan Template and Agent
Plan Diagram for these behaviours is illustrated (Figs. 12 and 13 respectively). The
Agent Behaviour Model was also validated against the Ontology Model and Agent
Class Diagram.

Initial State: any Agent Goal: File details provided upon receiving an upload query
Commitment Strategy: single-minded
Action 1: ValidateQuerySyntax (q : UserQuery)
 Pre-condition: true Post-condition: Query q is valid OR refusal message is sent to cl: Client

Action 2: ExecuteQuery (q : UserQuery)
 Pre-condition: q is valid Post-condition: File queried in q is found or no result is found

Action 3: ReplyToQuery (filepointer: File)
 Pre-condition: true Post-condition: f.Filename and f.Filetype are sent to cl: Client

Event 1: Reception of upload query q

Fig. 12. Agent Plan Template for the “Server” agent class

3.5 P2P MAS Agent Interaction Design

The first step here was to select a suitable interaction mechanism for the MAS. The
developer chose the direct interaction mechanism using ACL, rather than “indirect”
mechanism because he believed that the speech-act performatives provided by ACL
can better support the high level of communication semantics required by this appli-
cation than primitives provided by an indirect mechanism. The target application can
also reuse many interaction protocols provided by existing catalogues, such as FIPA’s
Protocol Library [17]. An Agent Interaction Model was then developed to define
interaction protocols between agents. Each protocol was represented by an AUML
Interaction Protocol Diagram (Fig. 14). The developer also checked the Agent Inter-
action Model against the Ontology Model for consistent use of constructs.

86 Q.-N.N. Tran et al.

Plan for Agent-goal “Upload query is responded as soon as it is received”

Query arrives from remote server

ValidateQuerySyntax QuerySpec

ExecuteQuery QuerySpec

Query is malformed

Query is well formed

SendRefusalMessage

ReplyToQuery rl : ResultList

Activate goal “Upload query is responded as soon as it is received”

Fig. 13. Agent Plan Diagram (for the Server agent class)

Client Agent/
Searcher Role/Downloader role

inform (kw: Keyword)Loop servers

inform (fname: Filename,
ftype: Filetype)

UserInterfaceManager Agent/
UserInterfaceManager role

inform (kw:Keyword)

inform (rl: ResultList)

Server
FileServer role

Getting file details from candidate providers

Fig. 14. Interaction Protocol Diagram

Preliminary Validation of MOBMAS (Ontology-Centric Agent Oriented Methodology) 87

The Agent Relationship Diagram gets finally updated to show descriptive informa-
tion for each interaction pathway between agent classes specifying the Interaction
Protocol and the used ontology.

4 Discussion, Limitations and Future Work

We have demonstrated the first four phases of MOBMAS – a methodology for ontol-
ogy-based MAS development – on a P2P community-based information sharing ap-
plication. (Due to space restrictions the results of the last phase, MAS Architecture
Design are not reported here). This work is part of an on-going evaluation of
MOBMAS as reported in [13]. The MOBMAS methodology was initially reviewed
and refined based on the feedback of two experts in AOSE. The refined methodology
was then used by two different developers to design a peer to peer community-based
information sharing application (this paper reports the results from one developer; the
results from the other developer are reported in [18]). The feedback from the develop-
ers was used to refine MOBMAS into its final version. Both the expert reviews and
test-uses by developers were conducted in a sequential order. Evaluation of the first
expert/developer was used to refine MOBMAS before the second expert/developer
was asked to evaluate/use the refined version. This sequential and independent proce-
dure prevented the possibility of two experts/developers identifying the same areas for
improvement, and helped to identify new areas of improvement that might arise from
the refinement of the methodology after the first review/test-use. In addition, the re-
finements made to MOBMAS as a result of the second expert’s/developer’s feedback
were also discussed with the first expert/developer to ensure that no conflicts of opin-
ions occurred. A feature analysis was the conducted on the final version of MOBMAS
to verify MOBMAS’ ability to support important AOSE methodological features,
steps and modelling concepts.

In both case studies the use of MOBMAS was conducted by experienced software
developers, who were not authors of the MOBMAS methodology but was given de-
tailed documentation of the methodology. Both case studies included developers
responses to a detailed questionnaire regarding the usage of MOBMAS. Existing
surveys indicate that they valued the step-by-step development process of MOBMAS
and the provision of many heuristics and techniques to support each step.

It must noted that even with the set of case studies and the questionnaires, without
comparing MOBMAS against other methodologies limits on the evaluation will re-
main without a direct comparison with other methodologies across a number of appli-
cation types. We expect this next phase of evaluation to highlight in addition to its
ease of use, its interoperability and its extensibility. MOBMAS supports interopera-
bility for agents with heterogeneous local knowledge can communicate by sharing a
common MAS Application Ontology, and by using this ontology to formulate and
interpret their exchanged messages. This also leads to extensibility since new knowl-
edge sources and agents can be easily added to the MAS. MOBMAS also supports
reusability since the core models of MOBMAS are composed of ontologies and onto-
logical concepts (namely, Agent Belief Conceptualization, Agent Behaviour Model
and Agent Interaction Model), hence the design can be adapted to a new application

88 Q.-N.N. Tran et al.

by simply changing the ontologies involved. This feature of MOBMAS will be tested
by attempting to reuse developed work products in significantly different applications.

Finally MOBMAS provided verification and validation: The steps of MOBMAS
enforce extensive consistency checking amongst the major model kinds. For example,
the Ontology Model is used to verify and validate the System Task Model, Agent
Class Model, Agent Behaviour Model and Agent Interaction Model. Currently, we do
not have a tool to enforce this checking. We are in the process of formalizing the
current manual checking. Beydoun et al. recently in [19] completed a preliminary
framework which checks the early requirements against role models. This will be
usable as a stepping stone to develop a supporting tool (as suggested by one of the
reviewers).

References

1. Gruber, T.R.: Automated Knowledge Acquisition for Strategic Knowledge. Machine
Learning 4, 293–336 (1989)

2. Shave, M.J.R.: Ontological Structures for Knowledge Sharing. New Review of Informa-
tion Networking 3, 125–133 (1997)

3. Uschold, M., Grueninger, M.: Ontologies: Principles, Methods and Application. Knowl-
edge Engineering Review 11, 93–195 (1996)

4. Fensel, D.: Ontologies: A Silver Bullet for Knowledge Management and Electronic Com-
merce. Springer, Heidelberg (2001)

5. Tran, Q.N., Low, G.: Comparison of Methodologies. In: Henderson-Sellers, B., Giorgini,
P. (eds.) Agent-Oriented Methodologies, pp. 341–367. Idea Group Publishing, USA
(2005)

6. Girardi, R., Faria, C.G.: Ontology-based Domain Modelling of Multi-Agent Systems. In:
OOPLSA Workshop, pp. 295–308 (2004)

7. Dileo, J., Jacobs, T., Deloach, S.: Integrating Ontologies into Multi-Agent Systems Engi-
neering. In: AOIS2002. 4th International Bi-Conference Workshop on Agent Oriented In-
formation Systems, Italy (2002)

8. Brandao, A.A.F., Silva, V.T.d., Lucena, C.J.P.d.: Ontologies as Specification for the Veri-
fication of Multi-Agent Systems Design. In: Object Oriented Programmings, Systems,
Languages and Applications Workshop (2004), California (2004)

9. Esteva, M.: Electronic Institutions: From Specification To Development. In: UAB - Uni-
versitat Autonòma de Barcelona, Barcelona. Artificial Intelligence Research Insitute
(2003)

10. Tran, Q.N., Low, G., Beydoun, G.: A Methodological Framework for Ontology Centric
Agen oriented Software Engineering. Computer Science Systems and Engineering 21,
117–132 (2006)

11. Tran, N.: MOBMAS: A Methodology for Ontology-Based Multi-Agent Systems Devel-
opment. In: School of Information Systems, Technology and Management, Vol. PhD.
UNSW, Sydney (2005)

12. Tran, Q.N.N., Low, G.C., Williams, M.A.: A preliminary comparative feature analysis of
multi-agent systems development methodologies. In: Bresciani, P., Giorgini, P., Hender-
son-Sellers, B., Low, G., Winikoff, M. (eds.) AOIS 2004. LNCS (LNAI), vol. 3508, pp.
157–168. Springer, Heidelberg (2005)

13. Tran, Q.N.N., Low, G.C.: MOBMAS: A Methodology for Ontology-Based Multi-Agent
Systems Development. Information and Software Technology (2007)

Preliminary Validation of MOBMAS (Ontology-Centric Agent Oriented Methodology) 89

14. Juan, T., Pearce, A.R., Sterling, L.: ROADMAP: extending the gaia methodology for
complex open systems. In: First International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS2002), Italy (2002)

15. Klampanos, I.A., Jose, J.M.: An Architecture for Peer-to-Peer Information Retrieval. In:
SIGIR 2003, pp. 401–402 (2003)

16. Mine, T., Matsuno, D., Kogo, A., Amamiya, M.: Design and Implementation of Agent
Community Based Peer-to-Peer Information Retrieval Method. In: Klusch, M., Ossowski,
S., Kashyap, V., Unland, R. (eds.) CIA 2004. LNCS (LNAI), vol. 3191, pp. 31–46.
Springer, Heidelberg (2004)

17. FIPA: FIPA Query Interaction Protocol Specification (2003)
18. Tran, N., Beydoun, G., Low, G.C.: Design of a Peer-to-Peer Information Sharing MAS Us-

ing MOBMAS (Ontology-Centric Agent Oriented Methodology). In: Information Systems
Development (ISD 2006), Budapest (2006)

19. Beydoun, G., Krishna, A.K., Ghose, A., Low, G.C.: Towards Ontology-Based MAS
Methodologies: Ontology Based Early Requirements. In: Information Systems Develop-
ment Conference (ISD 2007), Galway (2007)

A Methodology to Bring MAS to Information
Systems

Emmanuelle Grislin-Le Strugeon, Abdouroihamane Anli, and Emmanuel Adam

LAMIH-UMR-CNRS 8530, Le Mont Houy, F-59313 Valenciennes cedex 9, France
{emmanuelle.grislin,abdouroihamane.anli,emmanuel.adam}@univ-

valenciennes.fr

Abstract. Agents have been used to provide qualities of adaptation to
the Information Systems (IS) since the Nineties. Apart from agent-based
IS, existing IS can benefit from additional services provided by agents.
We focus on personalization services, which aim is to give specific and
customized responses to individual user requests. This paper describes a
methodology to design the adaptation part of an IS with the help of a
multi-agent system (MAS). An initial multi-agent architecture with an
application-independent organization and interaction protocols is pro-
vided. On this base, the methodology proposes a guide into the design
of the specific knowledge and skills that allow adaptation of the agents
behaviour to the characteristics of the application, and into realization of
the integration between IS and MAS. An example taken in the transport
information field illustrates our proposition.

1 Introduction

Due to the similitude between architectures of multi-agent system (MAS) and
distributed Information System, MAS have been used to provide qualities of
adaptation to the Information Systems (IS) since the Nineties. Agents are used
for the possibilities they offer mainly in terms of: distribution; autonomy; user
assistance; information recommendation; information personalization including
searching, filtering, content-matching, and presentation of information.
In a context of management of information integrating multiple modes of

transport (e.g. train, bus, subway), we focus on the information personalization
performed by a MAS. Above all, we study the possibility of adding a MAS
having this task to an IS that is already used. So we have developed a method,
described in this article, to design an Information Multi-Agent Systems, in the
aim to specify and build a MAS linked to an existing IS.
After an overview of the agents abilities used by Information Multi-Agent

Systems and the usual approaches in Section 2, we describe our methodology in
Section 3. Section 4 illustrates how we have applied it to personalize transporta-
tion information.

M. Kolp et al. (Eds.): AOIS 2006, LNAI 4898, pp. 90–104, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

A Methodology to Bring MAS to Information Systems 91

2 IS Based on MAS

In our works, we consider an Information Multi-Agent System (IMAS) as a
Multi-Agent System that is designed to make the kernel of an IS. The multi-
agent approach brings facilities of adaptation to distributed, dynamic, open or
evolving environments such as Internet and remote databases. Specific changes of
IS environment are formed by its users. Adaptation to the users is another ability
of the agents. They can perform personalization tasks in the aim to provide the
information that is relevant to the user.
The behaviours required by the agents to achieve the tasks of the information

system are described in a first section. The way they are organized to compose
IMAS is described in the second section.

2.1 Agents Abilities in IMAS

The agents in IMAS share fundamental features, such as: the ability to com-
municate; social knowledge about the skills of each other; and the coordination
methods used to achieve common tasks. On this fundamental and shared layer,
the agents differ by the skills they possess. Indeed, three categories of skills are
required to perform the information providing task (for a detailed classification
see for instance [14]), in the aim to:

1. interact with users, i.e. to understand their needs and to adapt the responses
from the system ;

2. interact with data sources, i.e. to search and access internal or external data
bases and web sites, to retrieve and collect the relevant data ;

3. process the data, i.e. the retrieved information and the data about the users,
in order to make the information match the users’ needs.

The interface agents that interact with the users have knowledge about the
available presentation formats, interaction material and software. The ability
for the agents to be physically distributed on several platforms can be used
to support various types of interaction. Via an agent, the communication with
the system is also richer than simple request/response transactions, because the
agent can include specific contextual information in the request to the IS and it
can apply specific formatting to the response. A part of the research for better
interactions with the user is done in the field of the avatar assistants, as, for
example, the embodied conversational agents [5].
The assistant agent possesses generally further functionalities than these ones,

taking part into the information processing and/or the management of the user
profiles. One of the best known examples of this kind is given by Letizia [16].
The wrappers agents are dedicated to the interaction with the data sources

required to know where the relevant data are and how they can be retrieved. The
distribution characteristic of the agents is well-adapted to the distribution of the
sources. Mobile agents can be used to migrate from one net source to another
one. The pro-activity feature of the agents that run remotely allows to keep a
useful activity even when the connection with a central system is interrupted.

92 E. Grislin-Le Strugeon, A. Anli, and E. Adam

Finally, information is processed by the information agents that are able to
perform gathering, filtering, fusion, etc. The process of generating a solution can
be made by integrating partial solutions. The management of the data about
the users requires learning abilities to make the user profiles evolve progressively
with the transactions.
In addition to the three categories of abilities above, there is another one

that consists in mediating or even coordinating the actions of the others. When
it appears to be too expensive (in terms of time costs or complexity of the
required social knowledge) to make the agents interact and coordinate directly
and themselves, a design solution is to use mediator agents, or even brokers,
whose task is to create links between offers and demands of services [11]. The
mediation activity requires some knowledge about the other agents’ abilities and
capacities.
The way these abilities are distributed among the agents in the IMAS results

from a software engineering choice.

2.2 Software Engineering Approaches of Information Multi-Agent
Systems

The global architecture of the IMAS includes generally the three main parts
previously cited, related to (i) the interaction with the users, (ii) the interaction
with the data sources, and (iii) the data processing. This is the common point
but distinct features must be studied to go further in the description and to clas-
sify the SE approaches used for agent-based IS and IMAS. As it is said about
recommender agents on the Internet in [17]: “[. . .]most systems have been devel-
oped following ad hoc approaches to satisfy specific application requirements.”
However, two ways of designing a IMAS can be distinguished, which are the
functional and the distributed solving approaches ([10]; [21]).
The functional approach consists in reproducing the functional division of the

system into the multi-agent architecture. Each agent has a distinct role, it is in
charge of one of the three tasks described above. There is sometimes a fourth
task which results from dividing the data processing task in two parts: a first
one that is concerned by the users profiling and a second one that is dedicated
to the information filtering, the content-matching, etc. The InfoSleuth [19] and
IMPS [7] systems can be classified in this approach.
In the second approach, information gathering from multiple data sources on

behalf of the users is considered as a distributed solving problem. The focus is put
on the interaction between several agents in order to merge heterogeneous data.
The RETSINA architecture and its application to web information in WebMate
[6], and the systems BIG [15] and CIA [10] belong to this approach.
In our opinion, these two approaches are not really antagonist. They differ es-

sentially by the way the abilities of the agents are distributed. According to the
first approach, the emphasis is put on the roles and abilities of the agents, but
these notions can result in various abstraction levels. Indeed, the system analysis
can manipulate high-level roles and abilities, information processing for example,
that can lead to multiple finer roles and abilities with the more detailed design of

A Methodology to Bring MAS to Information Systems 93

them, as information processing can be divided into information filtering, fusion
and preferences applying, for example. Then these notions can be encapsulated as
high-level ones in agents, or being implemented as detailed elements in fine-grain
interacting agents. According to the second approach, the emphasis is put on the
communication and the shared ontologies used to collaborate or negotiate. From
an abstract view of the second approach, the distributed solving is realized by a set
of interacting agents that can be seen, together, as a coarse-grain data processing
agent. The realization of a common goal such as information processing results
from a coordination of the agents, which can be achieved for example, with the
help of distributed partial plan exchanges.
According to these two SE approaches, our proposition stands in the func-

tional approach at a global level, but it allows the use of distributed methods
by the agents to achieve common goals. Our objective is not to develop a full
new IMAS, but to propose development of specific parts enabling the MAS to
provide new functionalities to an existing IS. Our main objectives are on the one
hand, to avoid ad-hoc developments as much as possible, and on the other hand,
to facilitate modifications of the behaviour of the system in order to adapt to
new requirements. The scope of this study is limited to the set of functionalities
that concern the personalization of the information, i.e. the adaptation of the
response of the information system to the users’ needs and preferences.

3 A Methodology to Bring MAS to IS

The proposed methodology, called PerMet (Personalization Methodology), is
aimed at providing personalization services, i.e. sets of particular functionalities,
to IS by using the adaptation capacities of a MAS. PerMet is aimed at responding
to a double adaptation goal:

– the adaptation to future modifications of the system. Especially, the idea
is to facilitate modifications in the services provided by the system. Toward
eventual modifications, the principle is to use the facilities the agents offer in
terms of reorganization and adaptation of their behaviour. This is described
in the first section below.
– the adaptation to already existing IS. The idea is to allow some improvement
of the IS behaviour with only few adaptation of it. This is detailed in the
second section.

3.1 MAS Adaptation

The adaptation of the system relies upon the MAS. In the present approach,
the agents adapt themselves as for the quantitative adaptation and requires
an explicit human intervention for the qualitative adaptation. The quantitative
adaptation comes from the organization of the agents. The qualitative adaptation
is done by the management of the agents’ behaviours.

Organization of the MAS. The organization of the agents in PerMet can be
classified with the functional approaches, because the agents are specialized in

94 E. Grislin-Le Strugeon, A. Anli, and E. Adam

one specific and rather fine-grained task. However, they are not ad hoc designed,
all of them derive from a common model that supports different instantiations
of knowledge and behaviours according to their role. They can solve common
problems using task delegation.
The agents are organized in hierarchies. Each personalization demand is

processed by one hierarchy managed by a mediator agent that supervises and
coordinates a profile management agent and a search agent. This one can coor-
dinate the actions of several other agents, each of which being a specialist for
some specific data sources (Figure 1). The hierarchies are created “on-demand”:
the fundamental hierarchy is copied every time it is required, and each of its
clone is deleted when it has achieved its task. Consequently, at a given time, the
system includes a set of two or three-level hierarchies, each of them processing
a distinct information demand.

Fig. 1. Example of a hierarchy, member of the organization of agents

At a more precise level of description, a role is composed of “behaviours”
that can be considered as fine-grain skills or abilities. In the above hierarchy,
the three kinds of roles - the Mediator, Profile and Search roles - subdivide
in smaller and more specialised parts defined as behaviours. Every time one of
these “heavy” agents needs to proceed with one of its own behaviours, it creates
an appropriate “light” agent, that have only this required behaviour. The light
agents realize only the temporary activation of the heavy agents’ behaviours.
In concrete terms, this action is realized by creating threads on the fly to run
the methods that implement the agents’ behaviours. At the end of their task,
the light agents kill themselves. If the agent needs a behaviour that is owned
by another agent, it propagates its need via the links of the organisation. If no
other agent have the required skill, it creates the appropriate (heavy) agent, by
instantiating the predefined model.
This method is closely linked to the principles which are implemented in the

multi-agent platform we use, the Magique platform [20], and is quite similar,
concerning the development of IMAS, to the AMOMCASYS method, which
allows to specify MAS for cooperative work [1].
Some roles share common behaviours ; some of them require the call to other

behaviours. In the UML models, we propose that this need of a call by a behav-
iour to another one will be shown as a dependency link with the new stereotype
“require” attached to it. The client and the supplier of such a dependency link
are “behaviour” classes.

A Methodology to Bring MAS to Information Systems 95

This model of organization and interaction among the agents provides us a
common fundamental element, which is application-independent, to base the
MAS development.

Management of the Agents behaviours. The qualitative adaptation of the
agents can be performed in modifying their behaviours. For example, the learning
method used to make the user profiles evolve is encapsulated in a behaviour that
one or more agents possess. In condition of preserving its interface, the content
of this behaviour can be modified.
Similarly, it is possible to add behaviours to specific agents or to retrieve

behaviours in the system. As explained before, the light agents agentify the
behaviours, thus their quantity and their behaviour can be adapted to the cir-
cumstances, like a MAS adapt its composition when it is required.
The adaptation of the behaviours is designed in the view to be managed by the

system administrator. It is not a self-adaptation of the system but a possibility
to make it evolve manually, according to new requirements. However, it is a
dynamic adaptation because it can be realized at runtime.

3.2 Methodology

A main characteristic of PerMet consists in the separation of the MAS parts
from the IS ones, in order to allow reuse and distinct modification of each of
them. The design is then made in two parallel and independent phases: one for
the IS part design, which is also the starting point of the process, and one for
the MAS part design. The two phases follow traditional software engineering
steps and they join in a third phase, resulting in the global representation that
forms a “Y” (see Figure 2). The third phase that joins the results of the IS and
MAS parts consists in the creation of the conditions necessary for the dialogue
between these two parts based: on the knowledge for asking a service from the
IS part; on the knowledge of appropriate services providing from the MAS part.
The last phase is the evaluation phase that can lead to a new iteration. Indeed,
the process is iterative and incremental: each cycle aims at including a new
functionality.
The separation principle is not new, other approaches separate the IS design

from the personalization system design. For example, the methods proposed by
[13], [22], or [9], make this distinction.
The first reason for an approach that separates IS and MAS designs, is to

allow to add easily new functionalities to existing IS. Compared to existing agent-
oriented methodologies (see [2] for a detailed analysis of them), the position of
this work is not to study how information systems can be developed on the base
of MAS but rather to study how MAS can be used to enhance traditional IS.
When the IS already exists, the design consists either in creating the MAS that
will provide personalization functionalities, or in connecting it to an existing one
that is already dedicated to provide personalization treatments.
The second reason for the separated approach is that the independence of the

two design parts allows to enhance the behaviour of the system by modifying

96 E. Grislin-Le Strugeon, A. Anli, and E. Adam

Fig. 2. Overview of the PerMet methodology to design Information Multi-Agent Sys-
tem

only the agents methods, provided that no change is done in the communication
interface (it keeps the same in/out content). An integrated design would fix it
or, at least, would make it difficult to modify.
The third reason for the separated approach is to facilitate multi-application

personnalization. It should be possible, for example, to design a service that
allow a Single Sign-On process, provided by one MAS to several distinct IS.
However, the integration operations this approach requires may be seen as an

inconvenient. Indeed, the results of the analysis steps must be coherent, a work
must be done in order to precise which kinds of services are expected from the
IS side and, conversely, which ones can really be offered by the MAS. The aim is
to ensure that the IS will send the data required by the MAS and vice-versa, the
data the IS get from the MAS must fulfil its needs and must be included in the
information process the right way. Then, this approach requires an integration
step to detail the communication between both parts. The technologies exist
that enable the data exchange between them, like the web services standards.
It is also important to notice that the method does not guide the full develop-

ment of the IS and the MAS. It is focused on the steps which are specific to the
design of the personalization functionalities as improvements made to an exist-
ing IS. The MAS is not really developed from scratch as we give the fundamental
organization and agent models described in section 3.1. The design work consists
in adapting the models to the particular application requirements. The AUML
notation [3] is used to describe the system at the different design steps, with one
additional dependency stereotype (� require�), used to represent that one agent
behaviour requires the execution of another behaviour (see example in part 4).

A Methodology to Bring MAS to Information Systems 97

The specific steps to design the IS part of the system concern the service that
will be added to the IS. The notion of service differs here from the one described
in the Gaia methodology [23] by the level at which it is used. In PerMet, a
service is defined at a global level, as a global functionality provided by the
MAS, whereas in Gaia, a service is linked to a specific role. From the IS side,
the goal is to analyse the particular requirements related to this service and
to enable its integration to the existing elements by specific developments or
modifications.

Service analysis. The objective of this step is to analyse the functionalities
of the system, taking into account the specific requirements of the IS users
in terms of personalized services. This analysis is going then to pilot the
symmetrical step of analysis in the agents part of the design. The data that
will be exchanged between the IS and the MAS are also specified during
this step. The output of this step is the specification of the expected service
taking into account the personalization actions performed by the MAS.

Service design. On the base of the above specification, the aim is to detail
the architecture of the system, to do technical choices, to design the user
interface, etc. In the case of the adaptation of an existing service, the main
point is the design of the user interface. The output of this step is a set of
models describing the modification or the development that will be realized
in the IS to integrate the new service.

Service implementation. During this step, the service is developed according
to the conceptual models defined during Service Design step. Tests of service
can be made on the base of data samples. The output of this step is the
software of the service.

The base of the multi-agent organization is provided, as described above. The
analysis steps of the methodology consists in the specification of the roles played
by the agents, and in the application dependent adjustment of their interactions
and behaviours. Our proposition is driven by the underlying hierarchical orga-
nization and interaction model previously described. The IS, the data sources
and the users form the environment of the MAS. The specific steps to design the
MAS are the following.

Agents analysis. The aim in this step is to model the agents that will be useful
for the personalization required by the users. It consists mainly in describing
the tasks of the MAS and to specify the related roles of the agents to which
they are assigned. The specification must detail, for each role, the goals, skills
and knowledge of the agents. We propose to start with the three categories
of tasks described in Part 2.1: interaction with the users, interaction with
the data sources and data processing. The agents prototypes being given,
the work consists in adapting them to the specific needs of the IMAS (see
the example given in Part 4). The output of this step is the specification
of the agent models for the defined service. When it seems necessary, it is
then possible to loop back toward the Service Analysis to propose additional
functionalities.

98 E. Grislin-Le Strugeon, A. Anli, and E. Adam

Behaviour design. It concerns the design of the methods and knowledge to
achieve the expected behaviour for each agent model specified in the previous
step. The aim is to detail what each agent model must be able to do and
what it must know in order to perform its task. The interaction protocols are
written in this step. Then the technical solutions regarding to each behaviour
must be studied. The output of this step is the agents’ detailed contents and
the activity representations, including the interaction models.

Behaviour implementation. The behaviours are realized and tested during
this step. The agents are created and deployed. The behaviour of the agents
and their interaction are tested.

Once the service and the agents are implemented, they must communicate with
each others. The goal of the next step is to create the conditions for this com-
munication.

Integration. It is the step of the integration of the IS and the MAS to obtain
the IMAS. The objective is to create the required links to allow the IS and
the MAS to communicate and to exchange data. We propose to use the web
services paradigm to generate the communication link between them. From
the IS side, an application interface must be developed to be able to use the
services that are proposed by the MAS.

Evaluation. In the last step, final evaluations are performed, with possible
back influence to the IS or the MAS design. The evaluation can be of three
different types: ergonomic, technical or qualitative. Ergonomic evaluation
consists to evaluate the usability [18] of the IMAS. Technical evaluation ver-
ifies the implementation conformity of the system compared to the existing
standards. And qualitative evaluation consists to computer user satisfaction
degree about the personalisation provided by the system. Each of them can
lead to modify the models produced in the previous steps of the design.

A first application of our methodology PerMet has been led in the transporta-
tion information field.

4 Application to an IS Dedicated to Transportation
Information

We used the PerMet methodology to personalize transportation information. The
aim of the personalization is to recommend relevant routes for each user and to
inform from disturbances in taking into account the data, the user and his/her
interaction platforms. The itinerary information are proposed as complementary
services linked to an electronic agenda. The agenda is designed to be used via
web pages or PDA (Personal Digital Assistant).
In this aim, we have connected an existing web application, a transportation

Information System, with a MAS, following the steps of the methodology.

A Methodology to Bring MAS to Information Systems 99

Fig. 3. Agents Analysis step: Example of agent role description in a note

The Service Analysis is used to detail the goal and the expected function-
alities. Among them, the emphasis has been put on the interaction with the
user’s personal agenda. We focus on integrating transportation information to
the users’ daily organization. The expected service consists in retrieving relevant
transport data and recommend the routes and means that are susceptible to be
preferred by the user. It has been described by a use case diagram.
The Service Design describes the behaviour of the system in taking into ac-

count the information given by the MAS. For example, it includes the possibility
to see route recommendations linked to an event in the agenda. Every use case
resulting from the analysis step has been detailed by an activity diagram. Com-
munication diagrams have been used to describe the interaction with the user.
The Service Implementation is the step during which some developments are

realized. For example, an agenda was already existing, but we extend the XML
format used by this one to include itinerary data. In this step, the use of a LDAP
dictionary has been adopted to manage users who must be identified to provide
them personal recommendations.
The Agents Analysis lead to identify five roles of agents according to the sets

of expected functionalities provided by the service analysis results. These roles
are: to assist the users and adapt the presentation to the interaction platform;
to create and maintain the user profiles; to process the routes and disturbances;
to manage the interaction with agendas and their constraints; to coordinate and
integrate the results of the agents. The aim is to detail the tasks each of them
must be able to perform, in order to create the required skills for the agents.
As an example, the Profile role, is described in Fig. 3: its tasks are detailed
in a textual form in a note associated to the role class, that will be useful to
determine agent behaviours in the behaviour design step. Like others method-
ologies (PASSI [4], for example) agent structure is modelled by a class diagram
with stereotype “agent”. But our representation mentions neither attribute, nor
method: an agent can change his behaviour, it is thus not appropriate to fix his
behaviour in a method. Once the roles have been described, the aim is to find
coherent sets and eventual common skills among them.
During the Behaviour Design, the agent roles are realized by sets of behaviours

and the activities of each role are detailed. Each role is defined by the skills the
agents must possess to perform their tasks. The skills are modeled as independent
units of behaviours that can be associated to the roles. As an example, the

100 E. Grislin-Le Strugeon, A. Anli, and E. Adam

Fig. 4. Behaviours Design step: Two of the behaviours used by the Profile agents

realization of the users’ profiling role is given in Figure 4: the Profile agents
include two behaviours that enable them to manage the users profile and to use
LDAP data.
To complete the design of the roles, the activity models describe their internal

dynamic process. For example, the activity model of the profile management
agents is described in Figure 5: the process selects one filtering method among
three, according to the knowledge of the system about the user and the request.
The Behaviour Implementation is applied to all of the specified and designed

models of agents. For example, the development of the Profile agents described
above requires to develop the following behaviours:

– KSocialLastFilteringSkill: To personalize the itineraries according to an
activity model like the one presented in Figure 5,
– LDAPSkill: To access the LDAP directory service to get the user’s personal
data, for example a phone number to warn him/her of a disturbance via an
SMS during a trip, using then the DisturbanceSkill
– ManipulateProfileSkill: To allow the user to manage his/her own profile:
profile visualization, deleting, or modification of the weights which are asso-
ciated to the criteria,
– SaveChoiceSkill: To save the choice made by the user,
– DisturbanceInfoSkill, DisturbanceSkill: To personalize the disturbance in-
formation,
– MailSkill: To enable sending mails (to warn the user of eventual distur-
bance).

On Figure 6, each class represents a behaviour. The public methods corre-
spond to the callable tasks: any agent can ask to the agents having the behaviour
ManipulateProfileSkill to carry out the task getProfile. The agents having this
behaviour perform internal actions, represented by the private methods, using
internal states represented by the attributes. As it has been explained previously,
a link(� require�) between two classes means that at least one task or internal
action carried out by the origin behaviour requires the execution of the target
behaviour, either by the same agent or by a call to another agent.

A Methodology to Bring MAS to Information Systems 101

Fig. 5. Example of activity diagram realized during the Behaviours Design step

In our example, the Integration of the IS and the MAS (called PerSyst) is
based on SOAP (Simple Object Access Protocol) communications. For example,
the user adds a new event to its agenda. This action triggers the creation of an
XML file that includes information about the sequence of the events of the day.
The IS sends the file as the parameter Request in the call to the MAS:

Response=perSyst.request("searchItinerary",Request)

The research agents look at the available transportation means and their time
data. The solutions are ordered according to the user’s preferences and formatted

Fig. 6. Example of class diagram realized during the Behaviours implementation step

102 E. Grislin-Le Strugeon, A. Anli, and E. Adam

Fig. 7. Example of display based on the data file exchanged by the IS and the MAS
in the XML format

to complete the solution part of the XML file, that forms the response to the
request. The response is transformed by the IS to be displayed by the user
interface as in Figure 7, where the first result given by the MAS is proposed to
the user by the IS. The last line of the display gives the reason for the system
to choose the above itinerary solution.
The Evaluation step has been divided into three parts:

– The technical tests were aimed at detecting eventual defaults due to the
implementation steps. Especially, the integration tests focused on the inter-
action between the IS and the MAS.
– The evaluation of the personalization method was aimed at checking that the
personalization method correctly answers to the users requests, according to
quantitative and qualitative criteria. The quantitative aspect we evaluated is
the response times of the methods used by the profile agents. The qualitative
aspect we evaluated is the rate of the prediction errors of two collaborative
filtering methods. We chose the one that decreased the quicker while the
number of requests increased.
– The evaluation of the software ergonomy is aimed at gathering users opinion
about the content and the display of the personalization provided by the
IMAS. It is not finished but some preliminary tests have been done that
report a satisfying behaviour of the system according to the users preferences
and the support (PDA or PC) they used, and a need of improvements in the
adaptation to the user’s abilities and the context of use.

A Methodology to Bring MAS to Information Systems 103

5 Conclusion

In this paper, we have presented PerMet, a methodology to design Information
Multi-Agent Systems. The originality of the approach is the division of the de-
sign into two distinct branches, the first one being dedicated to the IS and the
other one to the MAS. The aim is both to facilitate the integration of adapta-
tion services like the personalization to existing IS, and to allow the reuse of
personalization services provided by existing MAS.
The methodology has been applied to an IS dedicated to transportation in-

formation. To go further in the reusability aspect of our proposition, we will
study whether the methods that allow the identification of the reusable parts in
agent-oriented systems can apply in the context of IMAS, like in [12].

Acknowledgements

The present research work has been supported by the Region Nord-Pas de Calais
and the PREDIM program (project MOUVER.PERSO). The authors gratefully
acknowledge the support of these institutions.

References

1. Adam, E., Mandiau, R.: Design of a MAS into a human organization: applica-
tion to an information multi-agent system. In: Giorgini, P., Henderson-Sellers, B.,
Winikoff, M. (eds.) AOIS 2003. LNCS (LNAI), vol. 3030, Springer, Heidelberg
(2004)

2. Arazy, O., Woo, C.: Analysis and design of agent-oriented information systems.
Knowl. Eng. Rev. 17 (3), 215–260 (2002)

3. Bauer, B., Muller, J.P., Odell, J.: Agent UML: a formalism for specifying multia-
gent interaction. In: Ciancarini, P., Wooldridge, M. (eds.) Agent-Oriented Software
Engineering, Springer, pp. 91–103. Springer, Heidelberg (2001)

4. Burrafato, P., Cossentino, M.: Designing a multi-agent solution for a bookstore
with the PASSI methodology. In: Bussler, C.J., McIlraith, S.A., Orlowska, M.E.,
Pernici, B., Yang, J. (eds.) CAiSE 2002 and WES 2002. LNCS, vol. 2512, pp.
27–28. Springer, Heidelberg (2002)

5. Cassell, J., Vilhjálmsson, H.: Fully Embodied Conversational Avatars: Making
Communicative Behaviors Autonomous. Autonomous Agents and Multi-Agent
Systems 2(1), 45–64 (1999)

6. Chen, L., Sycara, K.: WebMate: A Personal Agent for Browsing and Searching. In:
Proc.of AGENTS 1998, pp. 132–139. ACM Publishers, New York (1998)

7. Crow, L., Shadbolt, N.R.: IMPS - Internet agents for knowledge engineering. In:
Gaines, B.R., Musen, M. (eds.) Proc. of the 11th Workshop on Knowledge Acqui-
sition, Modelling and Management, SRDG Publ, Calgary (1998)

8. Demazeau, Y.: From interactions to collective behaviour in agent-based systems.
In: European Conference on Cognitive Sciences (1995)

9. Dickinson, I., Reynolds, D., Banks, D., Cayzer, S., Vora, P.: User Profiling with pri-
vacy: A framework for Adaptive Information Agents. In: Klusch, M., Bergamaschi,
S., Edwards, P., Petta, P. (eds.) Intelligent Information Agents. LNCS (LNAI),
vol. 2586, pp. 123–151. Springer, Heidelberg (2003)

104 E. Grislin-Le Strugeon, A. Anli, and E. Adam

10. Dignum, F.: Agent Communication and Cooperative Information Agents. In:
Klusch, M., Kerschberg, L. (eds.) CIA 2000. LNCS (LNAI), vol. 1860, pp. 191–207.
Springer, Heidelberg (2000)

11. Gleizes, M.P., Glize, P.: ABROSE: Multi Agent Systems for Adaptive Brokerage.
In Giorgini, P., et al (eds.) AOIS 2002. Agent-Oriented Information Systems, Pro-
ceedings of the Fourth International Bi-Conference Workshop on Agent-Oriented
Information Systems (AOIS-2002 at CAiSE*02), CEUR Workshop Proceedings. 57
(2002)

12. Henderson-Sellers, B., Debenham, J., Tran, N., Cossentino, M., Low, G.: Identifica-
tion of Reusable Method Fragments from the PASSI Agent-Oriented Methodology.
In: Kolp, M., Bresciani, P., Henderson-Sellers, B., Winikoff, M. (eds.) AOIS 2005.
LNCS (LNAI), vol. 3529, pp. 90–105. Springer, Heidelberg (2006)

13. Kobsa, A., Pohl, W.: The User Modeling Shell System BGP-MS. User Modeling
and User-Adapted Interaction 4, 59–106 (1995)

14. Klusch, M.: Information agent technology for the Internet: A survey. Data and
Knowledge Engineering 36, 337–372 (2001)

15. Lesser, V., Horling, B., Klassner, F., Raja, A., Wagner, T., Zhang, S.X.: BIG: An
agent for resource-bounded information gathering and decision making. Artificial
Intelligence 118, 197–244 (2000)

16. Lieberman, H.: Letizia: an agent that assists web browsing. In: Proc. of the Int.
Joint Conf. on Artificial Intelligence, pp. 924–929. Morgan Kaufmann, San Fran-
cisco (1995)

17. Montaner, M., Lopez, B., De la Rosa, J.L.: A Taxonomy of Recommender Agents
on the Internet. Artificial Intelligence Review 19, 285–330 (2003)

18. Nielsen, J.: Usability Engineering. Academinc Press, San Diego (1993)
19. Nodine, M.H., Fowler, J., Ksiezyk, T., Perry, B., Taylor, M., Unruh, A.: Active In-
formation Gathering in InfoSleuth. Int. Jnl.of Cooperative Information Systems 9,
3–28 (2000)

20. Routier, J.C., Mathieu, P., Secq, Y.: Dynamic skill learning: A support to agent
evolution. In: Proc. of the AISB 2001 Symp. on Adaptive Agents and Multi-Agent
Systems, pp. 25–32 (2001)

21. Shakshuki, E., Ghenniwa, H., Kamel, M.: An architecture for cooperative informa-
tion systems. Knowledge-Based Systems 16, 17–27 (2003)

22. Trousse, B., Jaczynski, M., Kanawati, R.: Using user behavior similarity for recom-
mandation computation: The broadway approach. In: HCI 1999. Proceedings of
8th international conference on human computer interaction, pp. 85–89. Lawrence
Erlbaum Associates, Mahwah (1999)

23. Wooldridge, M., Jennings, N., Kinny, D.: The Gaia methodology for agent-oriented
analysis and design. Jnl. of Autonomous Agents and Multi-Agent Systems. 3(3),
285–312 (2000)

M. Kolp et al. (Eds.): AOIS 2006, LNAI 4898, pp. 105–122, 2008.
© Springer-Verlag Berlin Heidelberg 2008

On the Evaluation of Agent-Oriented Software
Engineering Methodologies: A Statistical Approach

Abdel-Halim Hafez Elamy1 and Behrouz Far2

1 Department of Electrical and Computer Engineering, University of Alberta
Edmonton, Alberta T6G 2E1, Canada

elamy@ualberta.ca
2 Department of Electrical and Computer Engineering, University of Calgary

Calgary, Alberta T2N 1N4, Canada
far@ucalgary.ca

Abstract. Agent-based computing is one of the fastest growing areas of
research and development in information technology. A large number of Agent-
Oriented Software Engineering (AOSE) methodologies have been evolved in
order to assist in building intelligent software. Nevertheless, the immaturity of
this emerging technology can result in difficulties for a developer when
deciding which methodology can best fit a prospective application. A limited
number of studies have been conducted to address the comparison and
evaluation of AOSE methodologies. However, such studies lack a reliable
framework that can be implemented and generalized effectively; most of the
proposed approaches are not capable of providing sufficient knowledge to
support accurate decision-making. In this paper, we present a reliable
framework based on adopting state-of-the-art statistical procedures to evaluate
AOSE methodologies and come up with a set of metrics that can help in
selecting the most appropriate methodology, or assembling more than one, to
accommodate the anticipated features.

Keywords: Multi-agent Systems (MAS), Methodologies, Balanced Incomplete
Block Design (BIBD), Analysis of Variance (ANOVA), Software Metrics.

1 Introduction

1.1 Research Problem

As a result of the growing interest in multi-agent systems (MAS), a large number of
AOSE methodologies and modelling techniques have been evolved in order to
support the development of agent-based applications in all of their life cycle phases.
From the literature, we have enumerated more than thirty methodologies; despite this
large number, AOSE still lacks maturity. One of the reasons is that most of the
available methodologies differ in their concepts, premises, development phases and
models; such divergences mean that methodologies lack adequate capabilities to
model the anticipated properties of all types of agents. Furthermore, some
methodologies are developed for special purposes, some do not have sufficient

106 A.H. Elamy and B. Far

documentation and some methodologies have not been presented in a commonly-used
language, such as English. Moreover, the lack of consensus between the different
AOSE methodologies is one of the open problems in order for a methodology to
become “mainstream” [26]. Deciding what methodology is the best to adopt for
developing a potential MAS depends on which aspects are considered more important
for the prospective application. Up till now, there is no industry-wide agreement on
the kinds of concepts a methodology should support.

1.2 Literature Review and Related Works

In order to strengthen our research work, we considered several views from most of
the related works established and presented in various refereed sources. For space
limitation, we will just exhibit here two of the leading works. For further reading, we
addressed this topic thoroughly with different views in [7].

1.2.1 Tran et al.’s Work
Tran et al. [28], [29] present a preliminary comparative Feature Analysis framework,
which they used to compare ten AOSE methodologies. They actually considered the
three major components of a system development methodology (process, models, and
techniques) as defined by one of the leading public-domain and process-focused full
lifecycle methodologies - Object-oriented Process, Environment and Notation
(OPEN). Tran et al. came up with a new framework to evaluate AOSE methodologies
based on identifying four groups of criteria: (1) Process-related criteria, (2)
Technique-related criteria, (3) Model-related criteria, and (4) Supportive feature
criteria.

This framework has the advantage that it provides a broad coverage of an
integrated set of features describing an AOSE methodology. However, we have some
comments that we believe worthy of consideration. Since it is hard to reflect on all the
described features when evaluating a methodology, the framework may eliminate
some methodologies from being qualified for evaluation. For instance, assessing the
methodology’s robustness, in terms of providing techniques to analyze system
performance for all configurations and to detect/recover failures seems to be more
hypothetical than realistic, and not easy to perform. In actual fact, some of these
features can be recommended in order to examine the final product of the developed
MAS or to evaluate the agent-oriented tool that can be used for the physical design of
the desired MAS, rather than evaluating the methodology itself. Moreover, the
framework supports the process of setting the criteria upon which methodologies will
be evaluated, but it lacks the empirical tool to quantify the subjective/qualitative
evaluation responses in a computational manner, which is indispensable during the
evaluation process. Furthermore, the Feature Analysis framework can be
recommended to adopt as an analytical tool to exhibit various detailed features
involving agents and MAS. Yet, it is not a purely evaluation framework. For instance,
in the process-related criteria, the development lifecycle is assessed by the question
“What development lifecycle best describes the methodology?” In fact, this cannot be
considered as an evaluation question because it does not show the degree of
usefulness or effectiveness of the life cycle used. Rather, it is a traditional comparison
question whose answer identifies the type of lifecycle used, without carrying
sufficient information about the efficiency of such a lifecycle.

 On the Evaluation of Agent-Oriented Software Engineering Methodologies 107

1.2.2 Shehory et al.’s Work
Shehory and Sturm [17] carried out an experimental study to compare and evaluate
the modelling technique existing in three agent-based methodologies (AOM, ADEPT,
and DESIRE) against two major criteria by examining some features from software
engineering (such as ease of use and understanding, expressiveness, refinability,
complexity management, testability, modularity, analyzability and open system
architecture) as well as characteristics of agent-based systems (such as autonomy,
complexity, adaptability, concurrency, distribution and communication). The authors
examined the evaluation criteria via a case study of an existing application that
utilizes a single-agent, auction agent, which participates and bids in web-based
auctions on behalf of its user in order to perform several tasks to purchase specific
items based on some given parameters. Our argument here is that Shehory and
Sturm’s study provides partial feedback when selecting a limited number of
evaluation criteria to compare a small number of AOSE methodologies. However, the
study does not cover many other criteria that affect the final feedback. Also, this
approach does not adopt a computational tool to quantify the evaluation data, which
in turn reduces the evaluation accuracy. In addition, the adopted qualitative
measurement scale, which is nominal, is incapable of providing adequate information
in the case of scaling up the study.

1.3 Research Questions

The ambiguity and lack of standardization associated with existing AOSE
methodologies makes it hard to take ad-hoc decisions to select the most appropriate
methodology that best fits a particular agent-based application. Unfortunately, most of
the available works about methodologies just pay attention to the best features of the
one presented. Moreover, in some cases the authors cannot see any negative aspects
with their own developed methodologies. Furthermore, some authors simply compare
their methodologies to object-oriented methodologies. However, object orientation is
not a main competitor when we talk about the analysis and design of agent-based
systems [2]. Finally, in some situations the recommendation may be to adopt more than
one methodology to achieve the specific requirements of a potential multi-agent system
that cannot be designed by means of a single AOSE methodology [16]. However,
assembling several methodologies requires better understanding of the differences and
the effectiveness of the attributes characterizing each methodology.

In this paper, we describe an empirical approach to evaluate the effectiveness of a
number of AOSE methodologies and come up with a set of metrics that rates their
common characteristics. We express four broad research questions to address this issue:

(1) What are the criteria upon which we can describe and evaluate a methodology?
(2) What are the different attributes that must be included under each criterion?
(3) How can we quantify and assess the evaluation criteria of a methodology?
(4) How can we rank the evaluated methodologies to easily select the most

qualified one, or assemble several in order to accommodate the anticipated
characteristics of an agent-based application?

The following sections describe a number of steps that will be adopted to answer
these research questions.

108 A.H. Elamy and B. Far

2 Selecting Methodologies and Participants

We started by conducting a primarily comparative survey to review a large number of
AOSE methodologies to select the most qualified ones. We defined a qualified
methodology as the one that fulfils the following three prerequisites: (a) has
reasonable documentation, (b) is fairly well known to the agent community and (c) is
not a special-purpose methodology; rather, it has a reasonable domain of applicability.
After reviewing 31 methodologies against these assumptions, the following nine
methodologies were selected: Gaia [25], MaSE [6], Tropos [14], Agent-SE [12],
MASSIVE [18], Prometheus [22], [5], MESSAGE [11], MAS-CommonKADS [15]
and PASSI [4].

Participants. There were 12 participants in our experiment, all of whom are graduate
students in Software Engineering at the University of Calgary who have adequate
knowledge and experience in developing agent-based software. They were provided
with sufficient documentation about the methodologies, clear instructions about the
experiment and an equal amount of time to complete their tasks by utilizing the
concepts of their assigned methodologies in designing an online university
registration system, and then assessing the methodologies using a well-prepared
survey questionnaire.

3 Evaluating the Methodologies

We based our evaluation upon the applyication of the Multidimensional Weighted-
Attributes Framework (MWAF) [7], [8]. The main idea of MWAF is to define the
most common and important criteria (or dimensions) of the methodology being
evaluated, identifying the attributes that describe each of these dimensions, and then
evaluating each dimension through its attributes against all the potential
methodologies that are selected for evaluation. As shown in Fig. 1, MWAF consists
of the following three main components:

1) Dimensions: the framework comprises a number of dimensions, each of
which represents one of the major evaluation criteria.

2) Attributes: are the different features pertaining to each criterion (i.e.
dimension) to describe it using a set of definite questions.

3) Parameters: the numerical values that are given to measure the attributes.

The participants were asked to give two parameters to each of the evaluated attributes:
a weight to identify the importance of the attribute, and a rate to measure its strength
or effectiveness. Weight is a subjective parameter, as it is entirely reliant upon the
evaluator’s personal opinion. On the other hand, Rate is an objective parameter
because it is measured according to the degree of availability or effectiveness of the
examined property as represented by the evaluated attribute. The values given to these
two parameters are numeric and range from 0 to 10. A value of ‘0’ implies full
absence of the measured attribute, whereas a value of 10 reflects its maximum
availability and strength. In order to take a broad view of the final conclusions, each
methodology will be evaluated by several participants (four in our study).

 On the Evaluation of Agent-Oriented Software Engineering Methodologies 109

Fig. 1. General hierarchy of the Multidimensional Weighted-Attributes Framework (MWAF)

3.1 Identifying Dimensions

We studied the selected nine methodologies comprehensively to identify the most
important/common measures that will be used as evaluation criteria and we came up
with the following eight primary criteria that we represent by the following dimensions:

1. Dimension 1: Agency-related attributes 5. Dimension 5: Upgradeability attributes
2. Dimension 2: Modelling-related 6. Dimension 6: Application attributes
3. Dimension 3: Communication attributes 7. Dimension 7: Support-related properties
 Dimension 4: Process-related attributes 8. Dimension 8: User-perception attributes

These dimensions will be treated statistically as independent factors, each of which
encompasses a number of attributes or levels i.e., modelling is a factor with seven
levels. We use the terms dimensions, criteria, or factors to mean the same thing.

3.2 Identifying Attributes

We broke down each dimension into a number of relational attributes that describe its
main features. Furthermore, we assumed that an attribute is low-weighted if it
receives an average weight of less than 7 (i.e. 70%) on a 10-point scale. By examining
the collected data against this assumption, we noticed that a number of attributes have
been given low weights. We investigated these attributes to validate the reasons for
being low weighted, and to assure that the recorded weights are accurate and not
inferred by random chance. As a result, we came up with the following six
dimensions that represent the set of criteria upon which we can describe and evaluate
AOSE methodologies. This answers the first question we stated in Section 1.3.

3.2.1 Dimension 1: Agency-Related Attributes
This dimension comprises attri- butes that address features involving the internal
properties and basic architecture of agents. The conceptual hierarchical structure of
this dimension is given below.

1. Architecture properties
1.1 Organization 1.2 Mobility

2. Basic properties
2.1 Autonomy 2.2 Reactivity 2.3 Reasoning 2.4 Temporal continuity

110 A.H. Elamy and B. Far

3. Advanced (mental) properties
3.1 Beliefs 3.2 Desires (goals) 3.3 Intentions (actions)

4. Learning ability

3.2.2 Dimension 2: Modelling-Related Attributes
This dimension consists of the following seven attributes that address and examine
specific features to describe the most common and important aspects for modelling
agents.

1. Notation 2. Expressiveness 3. Abstraction 4. Consistency
5. Concurrency 6. Traceability 7. Derivation and reusability

3.2.3 Dimension 3: Communication-Related Attributes
This dimension addresses features that are related to different possible interactions
and interfacing of agents. Following is the conceptual hierarchical structure of this
dimension:

1. Local communication (Basic Sociability)
1.1 Cooperation 1.2 Coordination 1.3 Competition 1.4 Negotiation

2. Wide Communication (Advanced Sociability)
2.1 Interaction with the external environment
2.2 Agent-based user interface 2.3 Subsystems interaction

3.2.4 Dimension 4: Process-Related Attributes
This dimension encompasses attri- butes that address and examine several issues
invol- ving the development process of agents and MAS. Following is the hierarchical
structure of this dimension:

1. Development lifecycle
 1.1 Architectural design 1.2 Detailed design
 1.3 Verification and validation

2. Refinability 3. Managing complexity

3.2.5 Dimension 5: Application-Related Attributes
This dimension includes the following four attributes that address and assess aspects
involving the methodology’s applicability and examine some relevant socio-economic
factors:

1. Applicability 2. Field history 3. Maturity 4. Cost concerns

3.2.6 Dimension 6: User Perception Attributes
In order to make a decision on whether to adopt a particular methodology, perception
is crucial and substantial due to the effect of the natural intentionality in human
behaviour [13]. As a result, we are not just concerned about how effective a
methodology is, but how users are satisfied and agree on its effectiveness in the way
that makes them satisfied and obliged to using it. User perception will be assessed
using the following three attributes:

1. Perceived ease of use 2. Perceived usefulness 3. Intention to use the methodology

 On the Evaluation of Agent-Oriented Software Engineering Methodologies 111

By identifying the attributes of the previously described dimensions, we answer the
second research question specified in Section 1.3. The complete definitions of the
proposed attributes of these dimensions are described thoroughly in [7] and [9].

3.3 Identifying Experimental Variables

Before selecting the statistical model that best fit our data, or even setting up our
hypotheses, it is essential to define the experimental variables and the appropriate
scale of measurement [10]. In our study, the effectiveness of the methodologies’
characteristics, as described by the weighted rate given to each dimension attribute, is
the dependent variable (i.e. response). In order to be tested, a dependent variable is
usually quantitative and measurable. Methodologies and participants are, on the other
hand, independent variables that influence and regulate the response; these variables
are discrete in their nature and work through a nominal (i.e. categorical) scale. When
applying ANOVA, the independent variables are usually called factors or treatments.

3.4 Identifying the Scale of Measurement

Our dependent variable will be measured by the selected 12 participants in the way
that a block of three methodologies is assigned at random to each participant.
However, due to the overlap among blocks and participants, each methodology will
be evaluated by four participants, and thus will have four replicates. The dependent
variable will be measured using the Universal Leveled Scale of measurement (ULS)
of Elamy [7]. This scale is a modified version of Stevens’ scales [23] to support the
objectives of Likert’s [21] in representing attitude data. The ULS contributes to
measuring attitudes based on assigning approximate numeric values to the examined
attributes. We assumed that our data represent a continuous random variable whose
values include a true zero to represent the absence of the measured property.
Consequently, we will use the highest level of the ULS as a measurement scale,
which is closely equivalent to the ratio scale of Stevens. Using the ULS capability in
quantifying qualitative data, and weighting the rates collected by the average weights
from the participants answers the third research question in Section 1.3.

3.5 Selecting the Appropriate Statistical Model

Our experiment includes nine methodologies that will be treated statistically as
treatments. We decided to have at least four replicates for each treatment. Thus, if we
used the One-way ANOVA model for a Complete Random Design (CRD), we will
need 36 participants to evaluate the nine methodologies, so that each participant will
receive one methodology at random to evaluate it, and each methodology will be
evaluated by four participants. However, we have two limitations here. Firstly, we
believe that there is heterogeneity among participants for many reasons (e.g. technical
experience, academic background, response accuracy and personal satisfaction with
the participation in the survey) that contribute to creating some sort of variability
among participants. Although the randomization will tend to spread the heterogeneity
around to reduce bias, we still have another strong limitation, the lack of resources -
we have only 12 participants. One way to overcome this deficiency is to make use of
each participant to assess more than one methodology. This solution led us to try
considering a 2-way ANOVA model with blocking. In such a model, each block of

112 A.H. Elamy and B. Far

treatments will be assigned at random to one participant. If we used a Randomized
Complete Block Design (RCBD), each participant must assess a complete block, i.e.
nine methodologies, and the design will probably be more effective because we will
have more replications, 12×9 = 108, by assuming considerable variability within
blocks. Unfortunately, this design has also a limitation that makes it hard to
implement because we cannot guarantee that all the participants are familiar with the
whole set of methodologies. After a thorough analysis and extended discussions, we
finally adopted the following Balanced Incomplete Block Design (BIBD) model:

ij i j ijY μ τ β ε= + + +

This model is referred to as “balanced” because each block will have the same
number of treatments, “additive” because no interactions are considered between
factors, “incomplete” because each participant will not evaluate a complete set of
methodologies, and “fixed” because we narrowed down the selection of the qualified
methodologies upon our own interest and not at random from a large number of
methodologies; thus, if we repeated the experiment, the same methodologies we be
used. By denoting the nine methodologies with letters from A to I and assigning each
block of three methodologies - after selecting them in such a way to be as
homogeneous as possible - to a participant, we can obtain 36 replicates that will
sufficiently satisfy our goal of having four replicas per treatment as shown in Table 1.

Table 1. BIBD tableau for blocks and treatments

Treatments (AOSE Methodologies), i

 M1 M2 M3 M4 M5 M6 M7 M8 M9
P1 A B C
P2 D E F
P3 G H I
P4 A D G
P5 B E H
P6 C F I
P7 A F H
P8 B D I
P9 C E G

P10 A E I
P11 B F G

B
lo

ck
 (

P
ar

ti
ci

pa
nt

s)
, j

P12 C D H
M = Methodology; P = Participant

The rationale behind blocking here is to eliminate the effects of extraneous
variation due to the noise that may result from the differences between participants.
By eliminating the variability within blocks from the experimental error, we gain a
substantial increase in the precision of the conducted experiment [1]. For this reason,
we tried to make the treatment blocks as similar as possible, by trying to avoid
assigning simple and complicated methodologies all together into the same block.

4 Statistical Hypotheses

In order to determine whether significant differences exist between the evaluated
methodologies, we will conduct a separate experiment to each of the six dimensions

 On the Evaluation of Agent-Oriented Software Engineering Methodologies 113

that characterize the nine AOSE methodologies. In this context, each set of attributes
representing a particular dimension will be investigated statistically over all the
evaluated nine methodologies. This will help to determine whether the strength or
effectiveness of this dimension differs among the evaluated methodologies or not.
The following set of hypotheses describes this strategy in a statistical fashion.

Null hypothesis, 0:o iH τ = , i =1 to 9
There is no significant difference in the mean effectiveness of the examined
dimension among the evaluated AOSE methodologies.

Alternative hypothesis, :aH at least one 0iτ ≠
There is a significant difference in the mean effectiveness.

5 Applying the ANOVA Approach

We analyzed the data by means of statistical techniques based on applying the
Analysis of Variances (ANOVA) procedure to the Balanced Incomplete Block Design
(BIBD) model proposed by Yates [27] to test the significant differences in the mean
effectiveness of each individual dimension among the evaluated methodologies. In
this way, if significant differences are ascertained, we shall go further to perform
pairwise comparisons to identify which pairs of methodologies significantly differ
from which ones. As a result, the evaluated methodologies are ranked according to
their mean effectiveness in each individual dimension. On the other hand, if the
overall ANOVA test was insignificant, we will not apply any pairwise comparisons.
In such a case, the conclusion to be made is that all the methodologies are statistically
equal in their main effects against the attributes of the examined dimension.

6 Dimensional Analyses

For space limitation, we will demonstrate a brief analysis for one of the dimensions
only (Dimension 1: agency-related). However, we shall present the results and
conclusions of all six dimensions. To assure higher accuracy, we performed our
computations manually; then, we validated the results with the computer output
produced by MINITAB® based on applying the General Linear Models.

6.1 Detailed Analysis of Dimension 1

Step 1: Data Abstraction and Formulation We extract the data for this dimension
from the collected row data; then we multiply the recorded rates by the corresponding
average weights of their attributes.

Step 2: Constructing the BIBD tableau By adopting the BIBD arrangement given in
Table 1, we can construct the BIBD tableau of this dimension as shown in Table 2.

Step 3: Testing the ANOVA assumptions We considered the following three main tests
to examine the assumptions involving the adequacy of ANOVA. The graphical results
of this procedure are shown in Fig. 2.

114 A.H. Elamy and B. Far

Test type Instrument used

Outliers a. Normal probability plot of residuals
b. Individual value plot of residuals versus independent variable

Normality of residuals Normal probability plot of residuals
Homogeneity of
variances

a. Residual plots against fitted values
b. Bartlett’s test

S tandar d ize d R e s idual

Pe
rc

en
t

3210-1-2-3

99

95
90
80
70
60
50
40
30
20
10

5

1

Fig. 2(a). Probability Plot of Standardized Residual, Normal - 95% CI

M e tho do lo gy

St
an

da
rd

iz
ed

 R
es

id
ua

l

987654321

3

2

1

0

-1

-2

-3

Fig. 2(b). Individual Value Plot of Standardized Residual vs. Methodology, 95% CI for Mean

Fitte d Value

St
an

da
rd

iz
ed

 R
es

id
ua

l

6.56.05.55.04.5

3

2

1

0

-1

-2

-3

Fig. 2(c). Residuals Versus the Fitted Values, (response is Rate)

 On the Evaluation of Agent-Oriented Software Engineering Methodologies 115

The plots of Fig. 2 do not suggest significant departures, either from the normality
of the distribution of errors or the homogeneity of error variances. Also, there is no
evidence of potential outliers; all the residuals appear to be bounded within a 95%
confidence interval and all fall within the acceptable range of normality, 3σ± [19].

Table 2. BIBD assignment for the average weighted rates of Dimension 1

Treatments (AOSE Methodologies), i
 M1 M2 M3 M4 M5 M6 M7 M8 M9

jY.

P1 6.462 5.957 5.531 Y.1 = 17.950
P2 5.371 4.817 5.047 Y.2 = 15.234
P3 5.348 5.931 6.034 Y.3 = 17.313
P4 6.212 5.034 5.734 Y.4 = 16.980
P5 5.822 4.536 5.352 Y.5 = 15.710
P6 6.146 5.300 5.932 Y.6 = 17.377
P7 6.399 4.819 5.347 Y.7 = 16.565
P8 5.718 5.009 5.828 Y.8 = 16.556
P9 6.037 4.483 5.582 Y.9 = 16.102
P10 6.667 4.991 5.518 Y.10 = 17.176
P11 5.531 5.079 5.412 Y.11 = 16.022

B
lo

ck
 (

P
ar

ti
ci

pa
nt

s)
, j

P12 5.841 5.325 5.452 Y.12 = 16.617
Y1. = Y2. = Y3. = Y4. = Y5. = Y6. = Y7. = Y8. = Y9. =

iY .
25.74 23.03 23.55 20.74 18.83 20.25 22.08 22.08 23.31

Y.. =199.603

M = Methodology; P = Participant

Step 4: ANOVA computations and hypotheses testing

We applied the adjusted formulae of the BIBD described by the author of this design
[27] to the data arranged in the BIBD tableau and came up with the analysis of
variance components summarized in the ANOVA table (Table 3).

Table 3. ANOVA table for Dimension 1

Source of
Variation

Degrees of
Freedom, df

Sum of
Squares, SS

Mean of
Squares Test Statistic, Fo

Adjusted
Treatments a−1= 9−1= 8 SSTRT(adj)=6.677 MSTRT(adj) = .835
Blocks
(Participants) b−1= 12−1= 11 SSBLK = 2.214 MSBLK = .201

Error N–a–b+1= 16 SSERR = .810 MSERR = .05063
Total N−1= 36−1= 35 SSTOT = 9.701

()TRT adj

o

ERR

MS
F

MS
=

 = 16.49

The calculated F statistic (F0 = 7.25) was larger than its critical value (Fcrt = 2.59).
Thus, F0 falls in the rejection region, and we have sufficient evidence to reject the null
hypothesis at a 95% level of significance based on the available data. Consequently,
there is a significant difference in the mean effectiveness of this dimension (Agency-
related) among the evaluated nine AOSE methodologies.

Step 5: Identifying significant differences and ranking the evaluated methodologies
against the attributes of Dimension 1.

116 A.H. Elamy and B. Far

Since the hypothesis test was significant, we shall go further to perform multiple
comparison tests to identify which methodologies differ. Christensen [3], Neter [20],
and others exhibit several methods for multiple comparisons, such as Bonferroni,
Tukey, Scheffe, Duncan, and Fisher’s LSD. However, Bonferroni and Tukey’s HSD
(Honestly Significant Differences) are suggested by many authors and statistical
packages to be more suited for BIBD, based on the conservativeness and accuracy of
various multiple comparisons methods. In this study, we shall adopt Tukey’s HSD
method. As a result, we obtained the following pairs of methodologies that show
significant differences: [M1] with [M3, M4, M5, M6, M7, M8, M9]; [M2] with [M4,
M5, M6]; [M3] with [M5, M6]; [M5] with [M7, M8, M9]; and [M6] with [M9].

Table 4. Binary representation of the evaluation results of Dimension 1

 M2 M3 M4 M5 M6 M7 M8 M9
M1 0 1 1 1 1 1 1 1
M2 0 1 1 1 0 0 0
M3 0 1 1 0 0 0
M4 0 0 0 0 0
M5 0 1 1 1
M6 0 0 1
M7 0 0 D

im
en

si
on

 1
:

A

ge
nc

y

M8 0

In the same way, we applied the previous calculations and tests to the other five
dimensions. Table 5 demonstrates the binary representation for the other dimensions.

Table 5. Evaluation results of Dimensions 2 to 6

 M2 M3 M4 M5 M6 M7 M8 M9

2:

od

el
lin

g

M1 0 1 0 0 0 0 0 0
M2 1 1 0 1 0 0 0
M3 0 0 0 0 0 1
M4 0000 1
M5 0000
M6 00 1
M7 00
M8 0

 D
im

en
sio

n
3:

 C

om
m

un
ic

at
io

ns
 M1 0 0 0 0 0 1 1 0

M2 0 1 0 1 0 0 0
M3 0 0 0 1 1 1
M4 0 0 1 1 1
M5 1 1 0 0
M6 1 1 1
M7 0 0
M8 0

 D

im
en

sio
n

4:

 P

ro
ce

ss

M1 0 1 1 1 1 1 1 1
M2 1 1 1 1 1 1 1
M3 0 1 0 0 1 1
M4 1 0 0 0 0
M5 0 1 0 0
M6 000
M7 00
M8 0

D
im

en
sio

n
M

 On the Evaluation of Agent-Oriented Software Engineering Methodologies 117

Table 5. (continued)

 D
im

en
si

on
 5

:

 A
pp

lic
at

io
n

M1 0 0 0 0 0 0 0 0
M2 0 0 0 0 0 0 0
M3 0 0 0 0 0 0
M4 0 0 0 0 0
M5 0 0 0 0
M6 0 0 0
M7 0 0
M8 0

 D

im
en

si
on

 6
:

 U

se
r

Pe
rc

ep
tio

n M1 0 1 0 0 1 0 0 0
M2 1 1 1 1 0 0 0
M3 0 0 0 0 0 0
M4 0 0 0 0 0
M5 0 0 0 0
M6 1 1 0
M7 0 0
M8 0

M1: Gaia M2: MaSE M3: Tropos M4: Agent-SE
M5: MASSIVE M6: Prometheus M7: MESSAGE M8: MAS-Common
M9: PASSI

It is to be noted that an intersection of ‘0’ in a cell implies that the corresponding
two methodologies, as crossed by their rows and columns, are not significantly
different. That is, when making a decision, both the methodologies are equal,
although they may have different means of effectiveness. On the other hand, a value
of ‘1’ implies that they are significantly different and the one with the higher mean
effectiveness is recommended. Tables 4 and 5 show that the mean effectiveness of all
the evaluated dimensions, except Dimension 5, differs among the evaluated
methodologies. In view of that, we ranked our methodologies against these

dimensions according to their estimated adjusted mean of effectiveness ˆiμ as shown in

Table 6.

Table 6. Ranking the evaluated methodologies

Rank Methodology Est. Mean Rank Methodology Est. Mean
Dimension 1: Agency Dimension 2: Modelling

M1: Gaia
1ˆ = 6.494 M2: MaSE

2ˆ = 6.593

M2: MaSE
2ˆ = 5.861 M9: PASSI

9ˆ = 6.428

M3: Tropos
3ˆ = 5.835 M1: Gaia

1ˆ = 6.037

M9: PASSI
9ˆ = 5.713 M7: MESSAGE

7ˆ = 5.777

M8: MAS-Common
8ˆ = 5.549 M8: MAS-Common

8ˆ = 5.560

M7: MESSAGE
7ˆ = 5.524 M5: MASSIVE

5ˆ = 5.271

M4: Agent-SE
4ˆ = 5.192 M6: Prometheus

6ˆ = 5.074

M6: Prometheus
6ˆ = 5.049 M4: Agent-SE

4ˆ = 4.755

M5: MASSIVE
5ˆ = 4.684 M3: Tropos

3ˆ = 4.580

118 A.H. Elamy and B. Far

Table 6. (continued)

Dimension 3: Communication Dimension 4: Process
M7: MESSAGE

7ˆ = 6.945 M1: Gaia
1ˆ =

6.932

M8: MAS-Common
8ˆ = 6.847 M2: MaSE

2ˆ
=

6.830

M9: PASSI
9ˆ = 6.560 M5: MASSIVE

5ˆ
=

5.839

M2: MaSE
2ˆ = 5.805 M8: MAS-Common

8ˆ
=

5.477

M5: MASSIVE
5ˆ = 5.760 M9: PASSI 9ˆ

=
5.460

M1: Gaia
1ˆ = 5.446 M6: Prometheus

6ˆ
=

5.227

M3: Tropos
3ˆ = 5.099 M4: Agent-SE

4ˆ
=

4.906

M4: Agent-SE
4ˆ = 4.619 M7: MESSAGE

7ˆ
=

4.808

M6: Prometheus
6ˆ = 4.575 M3: Tropos 3ˆ

=
4.502

Dimension 5: Application Dimension 6: User Perception
M2: MaSE

2ˆ =6.351 M2: MaSE
2ˆ = 7.340

M1: Gaia
1ˆ = 6.301 M1: Gaia

1ˆ = 6.672

M9: PASSI
9ˆ = 5.900 M7: MESSAGE

7ˆ = 6.198

M7: MESSAGE
7ˆ = 5.687 M8: MAS-Common.

8ˆ = 6.118

M5: MASSIVE
5ˆ = 5.527 M5: MASSIVE

5ˆ = 5.376

M8: MAS-Common.
8ˆ = 5.411 M9: PASSI

9ˆ = 5.251

M3: Tropos
3ˆ = 5.398 M4: Agent-SE

4ˆ = 5.193

M4: Agent-SE
4ˆ = 5.368 M3: Tropos

3ˆ = 4.928

M6: Prometheus
6ˆ = 5.187 M6: Prometheus

6ˆ = 3.818

It may look strange to find that the overall F test conducted by ANOVA is

significant, while the pairwise comparisons of means conducted by Tukey’s HSD test
fails to reveal any significant differences among the methodologies evaluated against
Dimension 5. In fact, this exceptional case occurs because the F test is simultaneously
considering all possible contrasts involving the treatment means and not just the
pairwise comparisons, which represent a special kind of contrasts in the form µ.j-µi..
This is the statistical explanation. From the agent perspective, this case implies that
the participants of the experiment could not reveal significant differences among the
evaluated methodologies in the application-related attributes of Dimension 5.

6.2 Overall Outcome of the Evaluation Process

So far, we have concluded the results of evaluation through a number of tables that
rank the methodologies and identify the significant differences among them. This
solution is extremely helpful when assembling a number of methodologies to develop
an agent-based application or proposing a unified AOSE methodology. However, it
may not be feasible in many situations to assemble AOSE methodologies by just
adopting the best modules from a set of methodologies. This is because of the

 On the Evaluation of Agent-Oriented Software Engineering Methodologies 119

technical difficulties associated with the compatibility between the different AOSE
methodologies and the available features or modules that can be isolated or
implemented away from each other. Above all, when we have a large number of
dimensions the situation will be vague and we may not be able to come up with
accurate decisions. To this point, this solution cannot clearly answer the fourth
research question described in Section 1.3. In order to find a proper solution, let us
first clarify the problem by compiling the ranking results as shown in Table 7. Now,
we can view our case as an optimization problem to select the highly-ranked
methodology from a set of methodologies based on the ranking of their effectiveness
against the six dimensions describing their major features. The following two
scenarios demonstrate different solutions to this problem:

Scenario 1:
We can rank the methodologies according to the accumulated proportional order of
their dimensions. For example, the Gaia methodology, M1, has the following
accumulated proportional order: 1(←D1) + 7/9(←D2) + 4/9(←D3) + 1(←D4) +
8/9(←D6), where the arrow points to the dimension contributing the proportional
value. In this way, we determined the accumulated proportional order of each
methodology as shown in Table 8. By sorting these proportions (see Table 9), we
come up with a clear solution to the fourth research question we raised in Section 1.3.
Note that we discarded the proportional orders given to dimension D5 because no
significant differences were detected when we evaluated this dimension against the
nine methodologies.

Scenario 2:
In some situations we need to rank the evaluated methodologies based on maximizing
the overall level of importance of each dimension. This is typically an optimization
problem that can be solved by means of linear programming techniques. Graphical
methods, and a widely used algorithmic technique, known as the Simplex method
[24], can be used to solve this problem. The first step in this solution is to construct a
mathematical model that consists of a set of constraints expressed in the form of a
system of linear inequalities that will be solved under the condition of maximizing the
following objective function:

max 1 1 2 2 3 3 4 4 5 5 6 6Z v d v d v d v d v d v d= + + + + + where vi is a constant that represents

the overall weight assigned to dimension i (i = 1 to 6), and di is a variable given to
each dimension i.

Table 7. Ranks of the six dimensions over the evaluated nine AOSE methodologies

Dimension, Di Order Proportional
Order D1 D2 D3 D4 D5 D6

1 9/9 M1 M2 M7 M1 M2 M2
2 8/9 M2 M9 M8 M2 M1 M1
3 7/9 M3 M1 M9 M5 M9 M7
4 6/9 M9 M7 M2 M8 M7 M8
5 5/9 M8 M8 M5 M9 M5 M5
6 4/9 M7 M5 M1 M6 M8 M9
7 3/9 M4 M6 M3 M4 M3 M4
8 2/9 M6 M4 M4 M7 M4 M3

M
et

ho
do

lo
gy

, M
i

9 1/9 M5 M3 M6 M3 M6 M6

120 A.H. Elamy and B. Far

Table 8. Accumulated proportional order of the nine methodologies against the evaluated six
dimensions

Methodology Total weight
M1: Gaia [9 7 4 9 8] / 9 37 / 9+ + + + =
M2: MaSE [8 9 6 8 9] / 9 40 / 9+ + + + =
M3: Tropos [7 1 3 1 2] / 9 14 / 9+ + + + =
M4: Agent-SE [3 2 2 3 3] / 9 13 / 9+ + + + =
M5: MASSIVE [1 4 5 7 5] / 9 22 / 9+ + + + =
M6: Prometheus [2 3 1 4 1] / 9 11 / 9+ + + + =
M7: MESSAGE [4 6 9 2 7] / 9 28 / 9+ + + + =
M8: MAS- CommonKADS [5 5 8 6 6] / 9 30 / 9+ + + + =
M9: PASSI [6 8 7 5 4] / 9 30 / 9+ + + + =

Table 9. Overall ranking of the evaluated nine AOSE methodologies

Rank 1 2 3 3 4 5 6 7 8
Methodology M2 M1 M8 M9 M7 M5 M3 M4 M6

7 Conclusions

Based on the available data, we came up with a set of criteria that can be considered
as empirical software metrics for evaluating AOSE methodologies. These criteria are
organized in a hierarchy of dimensions and attributes as presented in Section 3.2. We
then evaluated each of these dimensions against a set of nine AOSE methodologies by
applying the ANOVA procedure to the BIBD model. Consequently, we were able to
rank the evaluated methodologies according to the estimated mean effectiveness of
the evaluation dimensions. The final results are extremely helpful in supporting the
decision of selecting the most appropriate methodology, or assembling more than one,
to develop a prospective agent-based application.

The approach we presented in this paper is reliable because it adopts state-of-the-
art statistical procedures that makes use of the probability distribution of the data
gathered from a number of stakeholders (participants) and validate the concluded
results within specific confidence limits. The methodological analysis of this
approach can actually help to bridge the gap between research and practice, as it
addresses several issues that have largely been ignored by many researchers,
especially adopting statistical methods in solving Software Engineering problems.

The greatest threat to the generalizability of the findings obtained from this
research was the use of experimental subjects who are not strictly practitioners. This
may be a significant drawback, which results from the limitation of selecting
participants from a quite small population. However, because most of the participants
are PhD candidates who are specialized in Software Engineering and have adequate
knowledge and experience in the development of multi-agent systems, they can - to
some extent - be assumed to be agent experts. This hypothesis was actually true, as
supported by the reasonable normality and the consistency of the collected data. Even
so, we still claim the limited generality of the concluding results of this research.

 On the Evaluation of Agent-Oriented Software Engineering Methodologies 121

Following are some topics that we recommend for future work:

(1) Unifying AOSE Methodologies. Similar to the way the Unified Modeling
Language (UML) was evolved, we would suggest looking at the comparative
statistical analysis that we carried out in this research as a preliminary step towards
unifying AOSE methodologies. In this context, we would suggest the following three
primary steps to achieve this goal:

1) Identifying a whole set of dimensions and attributes that describe an
integrated and ideal AOSE methodology that meets future business trends
and technological advances.

2) Applying the proposed approach to evaluate the most common and mature
AOSE methodologies (e.g. the nine methodologies we evaluated in this
study) against the prospective dimensions of a future AOSE methodology.

3) Combining the strong attributes and dimensions that show higher average
weights and higher mean effectiveness.

We would like also to comment that unifying methodologies is a vital project that
requires adequate funding, time and expertise to propose the main components of a
future AOSE methodology, as well as acquiring more accurate evaluation data.

(2) Proposing Agent-Based Software Metrics. In the time of giving birth to a
unified AOSE methodology, we can easily deliver standardized scores that can be
generalized as agent-based software metrics or benchmarks. Such metrics would be of
great importance to support the process of evaluating any methodology by examining
the rates it gives against these metrics. In this sense, we measure the relative
efficiency of any AOSE methodology as compared to the unified methodology.

References

1. Antony, J.: Design of Experiments for Engineers and Scientists, Butterwort-Heinemann
(2003)

2. Bayer, P., Svantesson, M.: Comparison of Agent-oriented Methodologies Analysis and
Design. In: Programming, Blekinge Institute of Technology (BITSWAP) (2001)

3. Christensen, R.: Analysis of Variance and Regression. Chapman & Hall, Sydney (1996)
4. Cossentino, M.: From Requirements to Code with the PASSI Methodology. In:

Henderson-Sellers, B., Giorgini, P. (eds.) Agent-Oriented Methodologies, Idea Group Inc,
USA (2005)

5. Dam, K., Winikoff, M.: Comparing Agent-Oriented Methodologies. In: Giorgini, P.,
Henderson-Sellers, B., Winikoff, M. (eds.) AOIS 2003. LNCS (LNAI), vol. 3030, pp. 78–
93. Springer, Heidelberg (2004)

6. DeLoach, S., Matson, E., Li, Y.: Applying Agent Oriented Software Engineering to
Cooperative Robotics. In: Proceedings of the 15th Int’l FLAIRS Conference, Florida, pp.
391–396 (2002)

7. Elamy, A.A.: Statistical Approach for Evaluating Agent-Oriented Software Engineering
Methodologies, MSc thesis, University of Calgary, Alberta, Canada (2005)

8. Elamy, A., Far, B.: Multidimensional Weighted-Attributes Framework (MWAF) for
Evaluating Agent-Oriented Software Engineering Methodologies. In: CCECE’06.
proceedings of the IEEE 19th Canadian Conference on Electrical and Computer
Engineering, Ottawa, Canada (2006)

122 A.H. Elamy and B. Far

9. Elamy, A.: Perspectives in Agents-Based Technology. European Coordination Action for
Agent-based Computing: AgentLink III 18, 19–22 (2005)

10. Elamy, A., Far, B.: Utilizing Incomplete Block Designs in Evaluating Agent-Oriented Software
Engineering Methodologies. In: CCECE’05. Proceedings of the IEEE Canadian Conference on
Electrical and Computer Engineering, Saskatoon, Canada, pp. 1412–1515 (May 2005)

11. Evans, R., Kearney, P., Stark, J., Caire, G., Garijo, F., Gomez Sanz, J., Pavon, J., Leal, F.,
Chainho, P., Massonet, P.: MESSAGE: Methodology for Engineering Systems of Software
Agents, EURESCOM Project P907, EDIN 0223-0907

12. Far, B.: A Framework for Agent-Based Software Development. In: Proceedings of the 1st
EurAsian Conf., Shiraz, Iran (2002)

13. Fishbein, M., Ajzen, I.: Belief, Attitude, Intention and Behavior: An Introduction to
Theory and Research. Addison-Wesley, Boston (1975)

14. Giunchiglia, F., Mylopoulos, J., Perini, A.: The Tropos Software Development
Methodology: Processes, Models and Diagrams. In: Giunchiglia, F., Odell, J.J., Weiss, G.
(eds.) AOSE 2002. LNCS, vol. 2585, Springer, Heidelberg (2003)

15. Iglesias, C., Garijo, M., González, J., Velasco, J.: Analysis and Design of Multiagent
Systems using MAS-Common KADS. In: Rao, A., Singh, M.P., Wooldridge, M.J. (eds.)
ATAL 1997. LNCS, vol. 1365, pp. 313–327. Springer, Heidelberg (1998)

16. Juan, T., Sterling, L., Winikoff, M.: Assembling Agent Oriented Software Engineering
Methodologies from Features. In: Giunchiglia, F., Odell, J.J., Weiss, G. (eds.) AOSE 2002.
LNCS, vol. 2585, Springer, Heidelberg (2003)

17. Shehory, O., Sturm, A.: Evaluation of Modeling Techniques for Agent-Based Systems. In:
Shehory, O., Sturm, A. (eds.) proceedings of the 5th Int’l Conf. on Autonomous Agents,
Montréal, pp. 624–631 (May 2001)

18. Lind, J.: Agent-Oriented Software Engineering with MASSIVE. Informatiktage, Konradin
Verlag (March 2002)

19. Montgomery, D.: Design and Analysis of Experiments, 6th edn. John Wiley & Sons,
Chichester (2005)

20. Neter, J., Wasserman, W., Kutner, M.: Applied Linear Statistical Models, 5th ed., Irwin,
USA (1996)

21. Oppenheim, A.: Questionnaire Design and Attitude Measurement, 2nd edn. Pinter
Publications Ltd (1992)

22. Padgham, L., Winikoff, M.: Methodology for Developing Intelligent Agents. In: Alonso,
E., Kudenko, D., Kazakov, D. (eds.) Adaptive Agents and Multi-Agent Systems. LNCS
(LNAI), vol. 2636, Springer, Heidelberg (2003)

23. Stevens, S.: On the theory of scales of measurement. Science 103, 677–680 (1946)
24. Taha, H.: Operations Research: An Introduction, 7th edn. Prentice-Hall, Englewood Cliffs

(2002)
25. Wooldridge, M., Jennings, N., Kinny, D.: The Gaia Methodology for Agent-Oriented

Analysis and Design. Journal of Autonomous Agents and MAS 3(3), 285–312 (2000)
26. Wooldridge, M., Ciancarini, P.: Agent-Oriented Software Engineering: The State of the Art.

In: Agent-Oriented Software Engineering. Lecture Notes in AI, Springer, Heidelberg (2001)
27. Yates, F.: Experimental Design: Selected Papers, Griffin, UK (1970)
28. Tran, Q., Low, G., Williams, M.: A Preliminary Comparative Feature Analysis of Multi-

agent Systems Development Method-ologies. In: Proceedings of the 6th Int’l Bi-
Conference Workshop on Agent-Oriented Information Systems, pp. 157–168 (2004)

29. Tran, Q., Low, G., Williams, M.: Comparison of Ten Agent-Oriented Methodologies. In:
Henderson-Sellers, B., Giorgini, P. (eds.) Agent-Oriented Methodologies, Idea Group Inc,
USA (2005)

M. Kolp et al. (Eds.): AOIS 2006, LNAI 4898, pp. 123–142, 2008.
© Springer-Verlag Berlin Heidelberg 2008

From Early to Late Requirements: A Goal-Based
Approach*

Alicia Martínez1,2, Oscar Pastor1, John Mylopoulos3, and Paolo Giorgini3

1 Valencia University of Technology, Valencia, Spain
{alimartin,opastor}@dsic.upv.es

2 ITZ, Zacatepec, Mor. Mexico
3 University of Trento, Italy
jm@cs.toronto.edu

paolo.giorgini@dit.unitn.it

Abstract. The Software Engineering community is placing increasing emphasis
on understanding the organizational context of a new software system before its
development. In this context, several research projects focus on mechanisms
that facilitate the generation of a software system from early requirements
specifications. However, none of these has proposed so far a systematic process
for transforming an organizational model into a late requirements one. This
paper presents a methodological approach to precisely this problem. In the
proposed method, business goals constitute the basis for determining the
relevant plans to be supported by the system-to-be. A pattern language is then
used to systematically carry out the transformation from an organizational
model into a late requirements model. The Tropos framework serves as baseline
for this work. However, our work extends Tropos by proposing rules that
support the model transformation process, thereby making organizational
modeling an integral part of the software development process.

1 Introduction

In recent years, considerable attention has been paid to early phases of requirements
engineering. This interest is motivated by the need for mechanisms that ensure a good
fit between the functionality of the system-to-be and its organizational context. In this
setting, social concepts and mechanisms (goals, beliefs, and intentions;
communication and cooperation among agents) constitute powerful tools for
capturing the semantics of an organizational setting. The Tropos method [1] uses such
social concepts and mechanisms to support all phases of agent-oriented software
development, from early requirements to implementation. In this work, we focus on
the systematic transformation of an organizational model representing early
requirements for a system-to-be into a late requirements model that prescribes
functional and non-functional requirements.

* This work has been partially supported by the MEC project with ref. TIN2004-03534, the

Valencia University of Technology, Spain, Care Technologies Enterprise Inc.; in addition the
work was partially funded by the Provincial Government of Trento through a Fondo Unico
project (STAMPS).

124 A. Martínez et al.

Current research approaches determine the functional requirements for the system-
to-be (with an agent or non-agent orientation) directly from business plans/processes.
However, we believe (along with others working on Goal-Oriented Requirements
Engineering) that it is necessary to analyze not only the processes to be automated,
but also business goals because they are the ultimate purpose to be fulfilled by the
new system. We argue that this is the point where agent-oriented techniques can play
an important role in modeling and analyzing complex organizational structures.
Agent-oriented techniques, such as the Tropos framework, provide the modeling
primitives needed to represent an organizational domain and analyze it from an agent
perspective (e.g., with respect to autonomy, pro-activity, and sociality aspects). The
social and intentional information captured by agent models should play an essential
role in generating the inputs of the next modeling stage, namely that of late
requirements.

One of the main tasks of any requirement engineer is to determine the functions the
system-to-be needs to support in order to fulfill stakeholder objectives. In this sense,
the main contribution of this paper consists in providing a methodological approach to
determine the functionalities of the system from organizational models represented in
the Tropos framework.

In order to make the model transformation process systematic, we propose a set of
rules for identifying from stakeholder goals relevant plans to be supported by the
system-to-be. The proposed approach also supports the delegation of plans to system
actors. To accomplish this, we propose a pattern language where one can express
what delegations are best under what circumstances. The proposed approach makes it
possible to reduce the abstraction level of an early requirements model thereby
bringing it closer to a late requirements one.

The rest of the paper is structured as follows: Section 2 presents an overview of the
proposed method. Section 3 details our goal-based requirements elicitation process.
Section 4 presents a process for generating a late requirements model, while section 5
discusses related works. Finally, section 6 concludes and sketches future work.

2 Method Overview

In our proposal we adopt the social and intentional concepts of Tropos to model and
analyze enterprise behavior, and use this information to support design decisions
about the system-to-be. It is true that not all the information captured in an agent-
based early requirement phase is useful in the implementation of object-oriented
systems. However, the value of agent-oriented modeling lies in the provision of
precise justifications for each functional and non-functional requirement.

Our work has been conducted within the context of the OO-Method
(http://oomethod.dsic.upv.es/). OO-Method is an industrial, model-transformation
method that relies on a CASE tool [2] to automatically generate complete information
systems from object-oriented conceptual models. The OO-Method can be viewed as a
computer-aided requirements engineering (CARE) method where the focus is on
properly capturing system requirements in order to manage the full software
production process.

 From Early to Late Requirements: A Goal-Based Approach 125

According to OO-Method, the software productions process starts with the
specification of a conceptual model that consists of five complementary models
(Fig. 1): object, dynamic, functional, presentation and navigation. These models allow
the analyst to represent static and dynamic aspects of a software system. The resulting
conceptual model specifies the problem to be solved (problem space). Then the
graphical diagrams are formally represented in the OASIS formal language [3], which
is the source for the abstract execution model provided to guide the translation of the
elements of the conceptual model in a specific software development environment
(solution space). The final software product is functionally equivalent to the
requirements specification.

Despite major strengths of the OO-Method in automatically generating information
systems, there are disadvantages as well. Specifically, there is currently no systematic
method for acquiring requirements. Accordingly, a major challenge for the OO-
Method is to add a new phase of organizational modeling, from which requirements
can be derived. Our work is addressing this challenge. We have selected Tropos as a
baseline for modeling early requirements because of the expressiveness of the
modeling language (i*), as well as its methodological support for deriving late
requirements. In fact, our work extends the Tropos method. Moreover, OO-Method
focuses on functional aspects of the system-to-be and ignores completely non-
functional requirements [4].

Problem
Space Level

Automated
Translation

Solution
Space Level

Formal SpecificationFormal Specification

Repository

Uses

Conceptual Model

Functional Model

Object Model

Dynamic Model
Presentation Model

Navigational Model

Persistence Tier (SQL Server, ORACLE)

Application Tier (.NET, EJB)

Interface Tier (Visual Environments, Web, XML)

Empiricism (ESE)Empiricism (ESE)

Obtain

Care Technologies, S.A.

Actor
diagram

Goal-based Requi-
rements elicitation

process

Late require-
ments generation

process

Relevant
tasks to be
automated

New organiza-
tional model
with the SSA1

Late Requirements

1 Software System Actor

Input Process 1 Process 2Output Output

Early Requirements

Problem
Space Level

Automated
Translation

Solution
Space Level

Formal SpecificationFormal Specification

Repository

Uses

Conceptual Model

Functional Model

Object Model

Dynamic Model
Presentation Model

Navigational Model

Uses

Conceptual Model

Functional Model

Object Model

Dynamic Model Functional ModelFunctional Model

Object ModelObject Model

Dynamic ModelDynamic Model
Presentation Model

Navigational Model

Presentation ModelPresentation Model

Navigational ModelNavigational Model

Persistence Tier (SQL Server, ORACLE)

Application Tier (.NET, EJB)

Interface Tier (Visual Environments, Web, XML)

Empiricism (ESE)Empiricism (ESE)

Obtain

Care Technologies, S.A.

Actor
diagram

Goal-based Requi-
rements elicitation

process

Late require-
ments generation

process

Relevant
tasks to be
automated

New organiza-
tional model
with the SSA1

New organiza-
tional model
with the SSA1

Late Requirements

1 Software System Actor

Input Process 1 Process 2Output Output

Early Requirements

Fig. 1. Goal-oriented requirements elicitation process for the OO-Method approach

126 A. Martínez et al.

The proposed method starts with the definition of an organizational model that
represents relevant actors (stakeholders) and their goals (Fig. 1). Following, a goal
analysis process is carried out in order to identify plans that fulfill stakeholder goals.
The result of this process consists of plans. In the next step, we use transformational
rules (defined by a set of patterns) to generate a new organizational model. In this
model, the software system is represented within its operational environment along
with its functionality and relevant characteristics. This new model constitutes the final
result of our proposed method. The approach proposed in this paper is an extension of
the work presented in [5], where a first version of the proposed pattern language is
presented. Some improvements have been done to this first specification in order to
make explicit the steps needed to delegate plans to the system-to-be. Improvements
are also proposed for the structure used in defining patterns. However the main
contribution of this work is the integration of the pattern language with a goal-based
elicitation process.

An evaluation of the proposed method has been conducted using an industrial case
study involving car rental management. The case study dealt with the business
processes of a car rental company in Alicante, Spain. These included processes for
renting cars, chauffeurs services, telephone renting services, buying new cars, car
maintenance and car repairs.

3 Goal-Based Requirements Elicitation Process

The Tropos modeling framework has been found to be effective in facilitating the
representation of business actor behaviors and rationales [1] [6] [7]. This information
is relevant in establishing correspondences between actor activities and the
functionality of the system-to-be. This is the reason why, in this paper, the Tropos
methodology (founded on i* modeling concepts [8]) is used to support the early
requirements phase.

The Tropos early modeling phase is concerned with the identification and analysis
of stakeholders and their intentions. Stakeholders are modeled as social actors who
depend on each other for goals to be achieved, plans to be performed and resources to
be furnished. Intentions are modeled as goals which, through a goal-oriented analysis,
are decomposed into subgoals, which can support evaluation of alternatives.

The Tropos framework is made up of two social models that complement each
other: the goal diagram for describing the network of relationships among actors, as
well as the actor diagram for describing and supporting the reasoning that each actor
goes through concerning its relationships with other actors.

In this paper, the Tropos methodology has been adapted for the specific purpose of
eliciting the present setting within an enterprise. This is in contrast to the original
Tropos methodology that focuses on the representation of a desired enterprise
situation, starting with the goals of the enterprise and determining the space of
alternatives for fulfilling these goals (which amounts to design-from-scratch). In our
case, we focus on eliciting the current enterprise situation of an existing enterprise in
order to determining those business plans that need to be reengineered. These plans
will constitute the functional requirements of the system-to-be. Two phases compose
the goal-based elicitation process: (1) goal refinement, and (2) analysis of
contributions.

 From Early to Late Requirements: A Goal-Based Approach 127

Phase 1: Goal Analysis
The objective of this phase is to analyze each high-level goal that represents strategic
interests, to determine the current plans that can operationalize these goals.

As a first step of this process, an actor diagram is created depicting stakeholder
goals and dependencies among actors (stakeholders or otherwise). Fig. 2 presents a
fragment of the actor diagram for the car rental management case study, where the
goals (ovals) of customer, employee, and mechanic actors (circles) are shown.

EmployeeCustomer MechanicCar Car
Hardgoal
Actor
Resource
Dependency

Hardgoal
Actor
Resource
Dependency

Give car
maintenance Manage car

rentals
Rent a car

Fig. 2. Fragment of the actor diagram for the car rental case study

The arrows of Fig. 2 indicate dependency relationships between actors. For
example, the employee depends on the mechanic for having the car ready to be rented.
It is important to point out that for simplicity, this actor diagram only represents one
of many goals of the business actors.

During the next step, each goal defined in the actor diagram must be refined in
order to create a goal diagram that shows finer grain goals and plans for satisfying
root-level goals. In this modeling stage, a specific goal model for each actor must be
constructed to represent actor objectives. To create this model, we use goal
refinement and abstraction strategies based on AND/OR decomposition, means-ends,
or contribution links.

According to the refinement strategy, goal analysis starts with the elicitation of
high level goals of the enterprise. Then, subgoals are introduced that can lead to the
satisfaction of their parent goal. The refinement process ends when fine-grain goals
have been introduced for which there are actions that the system-to-be or external
actors can perform to fulfill them.

In the abstraction strategy, goal analysis starts by eliciting the plans that the business
actors need to perform to fulfill their activities and own goals. Later on, the objectives of
these plans need to be elicited in order to match them with the goals defined previously
in actor diagram. The abstraction process ends when current plans and low-level goals
can be matched with goals represented in the actor diagram. In the case of softgoals, the
refinement process ends with the determination of means that help to satisfy them. This
information is used to construct the low levels of goal models.

Usually, both refinement and abstraction approaches need to be used when eliciting
goal diagrams in real cases studies where managers do no have complete information
about the plans that operationalize the goals and where employees do not have
information about business objectives.

In our framework, softgoals are used to represent quality factors that the enterprise
wants to fulfill. The quality factors help an organization improve the performance of
its business processes and management systems. In the literature, there are many
authoritative quality attribute taxonomies [9] [10]. However, we selected only a set of
quality factors that are relevant to the context of our case study:

128 A. Martínez et al.

• Competitiveness: This quality factor refers to the characteristics (profita-
bility, costs, and quality) that permit an enterprise to compete effectively
with other firms;

• Performance: This quality factor refers to the response and processing
times of the business processes;

• Security: This quality factor refers to the ability to prevent unauthorized
access to the information used by the enterprise.

These quality attributes have been selected based on the needs of the car rental
enterprise analyzed in our case study. However, it is true that some rental companies
may consider a different set of quality attributes. For this reason, the determination of
the quality attribute is a customer-based decision. Quality factors (represented as
cloud figures) must also be modeled and refined in our goal diagram.

Fig. 3 illustrates a fragment of the goal diagram for the employee actor. In this
example, the goal manage car rentals of the employee actor is refined into two
alternative subgoals: 1) carry out reservations directly in the branch, and 2) carry out
reservations using alternative ways (such as internet or phone reservations). The goal
carry out reservations directly in the branch is refined into three subgoals using And
decomposition: analyze customer, analyze car availability, and formalize the
reservation. The goal refinement process ends when plans (represented as hexagons)
to fulfill the goals are identified and represented in the internal goal refinement tree
for the analyzed actor.

Once a goal model has been represented and the quality factors for the specific
enterprise have been identified and decomposed, the next step focuses on the analysis
of contributions between the elicited plans and the selected quality factors.

Obtain
customer info

Manage car
rentals

Carry out reservations
using alternative waysCarry out reservations

directly in the branch

Make reservations
by internet Make reservations

by phoneAnalyze
customer Formalize

the reservation

Analyze car
availability

Analyze availability
in branch Analyze availability in

other branches

Draw up
contract

Analyze the
customer info

Search the
customer info

Analyze
the credit card

Register
payment

Register
reservation

. . .

. . .

. . .

Employee

Analyze
customer

Competitivenes
s

Improve car
availability

Improve the
service

Security

Performance

Formalize
reservation

. . .

Actor

AND Decomposition
link

OR Decomposition
link
Means-end link

Boundary actor

Obtain
customer info

Manage car
rentals

Carry out reservations
using alternative waysCarry out reservations

directly in the branch

Make reservations
by internet Make reservations

by phoneAnalyze
customer Formalize

the reservation

Analyze car
availability

Analyze availability
in branch Analyze availability in

other branches

Draw up
contract

Analyze the
customer info

Search the
customer info

Analyze
the credit card

Register
payment

Register
reservation

. . .

. . .

. . .

Employee

Analyze
customer

Competitivenes
s

Competitivenes
s

Improve car
availability

Improve the
service

Improve the
service

SecuritySecurity

Performance

Formalize
reservation

. . .

Actor

AND Decomposition
link

OR Decomposition
link
Means-end link

Boundary actor
Actor

AND Decomposition
link

OR Decomposition
link
Means-end linkMeans-end link

Boundary actor

Fig. 3. Fragment of the goal diagram for the car rental case study

 From Early to Late Requirements: A Goal-Based Approach 129

Phase 2: Analysis of contributions to the quality factors
In this phase, we associate elicited plans with the quality factors in order to determine
what plans need to be automated through the system-to-be.

The first step of this process consists in propagating each final plan (those business
plans that are not decomposed into other subgoals or into subplans) into two
alternative categories: manual or automatic execution. By automatic execution we
mean the execution of the plan by the system-to-be.

The second step consists of associating plans with selected quality factors. Here,
we have to determine positive or negative contributions of manual/automatic plan
execution with respect to quality attributes. An account of the meaning of goal
contributions is given in [11]: “The intuitive meaning of the positive (+ and ++) and
negative (– and – –) contributions, is that the satisfaction of a goal G contributes
positively (negatively) to the satisfaction (denial) of another goal G’”. The measure of
positive/negative degree of contribution is expressed in qualitative terms +,++,-,++. If
a goal G1 contributes to the goal G2 with a ++ contribution, then if G2 is satisfied, so
is G1. In the goal G1 contributes to the goal G2 with a + contribution, then if G2 is
satisfied, G1 is partially satisfied.

Finally, the third step consists in selecting the plans that best fulfill the quality
factors relevant for the enterprise.

 Regarding the car rental case study, Fig. 4 presents a fragment of the model of
quality factors contributions for the employee actor. The plans search customer info
and analyze credit card have been propagated in two subplans to represent the manual
and automatic execution of these plans. For each propagated plan, contribution links
are created to associate the plans with the quality factors. This is done in order to
identify the influence of the plans on quality attributes. For example, the manual
execution of the plan analyze credit card has a negative contribution with
performance attribute. We consider that the selection of the correct plan to be
automated is not always a trivial task. This is because the contribution analysis can
lead to contradictions among the alternatives to satisfy the quality factors.

Search
customer info

Analyze
customer info

Analyze
credit card

. . .Carry out reservations
Directly in the branch

Automatic

Manual

Automatic

Manual

Competitiveness

Performance

Security

++

++

-

--
++

+

--

-
-

++
+
-

Employee
Contribution

+/-/++/--

Search
customer info

Analyze
customer info

Analyze
credit card

. . .Carry out reservations
Directly in the branch

Automatic

Manual

Automatic

Manual

CompetitivenessCompetitiveness

PerformancePerformance

SecuritySecurity

++

++

-

--
++

+

--

-
-

++
+
-

Employee
Contribution

+/-/++/--

Contribution

+/-/++/--+/-/++/--

Fig. 4. The contribution of plans to quality factors

In order to deal with contradictory cases, it is necessary to compare the
contributions of the propagated plans (manual or automatic options) with the selected
quality factors and take decisions based on priorities defined by the enterprise. For

130 A. Martínez et al.

example, in the case of the automatic execution of the plan search customer info, it
positively contributes to the quality factor Performance; however, this plan has a
negative contribution to the quality factor Security. If the enterprise wants to improve
the security of the system over the performance of the plans, then, the option that
seems to be more convenient is the manual execution of the plan.

Table 1 shows the relation among the alternatives to satisfy the business plans and
the proposed quality attributes for the running example. The table also shows the plans
selected to be automated according to their positive contribution to the quality factors.

Table 1. Matrix of plans and contributions for the car rental case study

Plans

Competitiveness

Performance

Security

Obtain customer info (Manual) - - -

Obtain customer info (Automatic) + + + *To be automated

Search customer info (Manual) - -- +

Search customer info (Automatic) ++ ++ - *To be automated

Analyze credit card (Manual) + + +
Analyze credit card (Automatic) + - -
Obtain reservation info (Manual) - - +
Obtain reservation info
(Automatic)

++ ++ + *To be automated

Search car availability (Manual) - - +
Search car availability
(Automatic)

++ ++ + *To be automated

Register reservation (Manual) - - +
Register reservation (Automatic) ++ ++ + *To be automated

Register payment (Manual) - - +
Register payment (Automatic) + + - *To be automated

This table is intended to support plan selection. To use it, the designer must decide

what the priority of the quality attributes is, and then select its mode of execution
(manual or automatic) based on the contribution analysis.

As a result of the previous steps (goal refinement and contribution analysis) the
plans that best satisfy the quality attributes of the enterprise have been identified.

The elicited relevant plans represent the requirements to be considered in the
construction of the software system. Fig. 5 shows a fragment of the organizational
model, with special marks for plans to be automated.

4 Late Requirements Generation Process

The next step in our proposed method consists of inserting the software system actor
(SSA) as another actor in the organizational model with the objective of determining
the type of interaction of other actors with the SSA. This way, we identify the
functionality expected for the system-to-be.

 From Early to Late Requirements: A Goal-Based Approach 131

Obtain
customer info

Manage car rentals

Carry out reservations
using alternative ways

Carry out reservations
directly in the branch

Make reservations
by internet

Make reservations
by phone

Analyze
customer Formalize

reservation

Analyze car
availability

Analyze availability
in branch Analyze

availability in
other branches

Draw up
contract

Analyze
customer info

Search the
customer info

Analyze
credit card

Register
payment

Register
reservation

. . .

Employee

Analyze
customer

Formalize
the reservation

Customer

Mechanic

Get a car

Purchase Car
Rent a car

make
reservation

Provide info
reservation

Provide
information

Car

Get a
car

Customer
Information

Info about
reservation

Search car
availability

Obtain reserva-
tion info

Search car
availability

Handover
car

Delivery
carrequest

car to garage

Delivery car
to customer

Car

Give car
maintenance

Delivery
carclean

cars

Have cars
In conditions

Have car ready

Have car
ready to rent

Provide maintenance
to cars

Plan to be automated

Legend

Obtain
customer info

Manage car rentals

Carry out reservations
using alternative ways

Carry out reservations
directly in the branch

Make reservations
by internet

Make reservations
by phone

Analyze
customer Formalize

reservation

Analyze car
availability

Analyze availability
in branch Analyze

availability in
other branches

Draw up
contract

Analyze
customer info

Search the
customer info

Analyze
credit card

Register
payment

Register
reservation

. . .

Employee

Analyze
customer

Formalize
the reservation

Customer

Mechanic

Get a car

Purchase Car
Rent a car

make
reservation

Provide info
reservation

Provide
information

Car

Get a
car

Customer
Information

Info about
reservation

Search car
availability

Obtain reserva-
tion info

Search car
availability

Handover
car

Delivery
carrequest

car to garage

Delivery car
to customer

Car

Give car
maintenance

Delivery
carclean

cars

Have cars
In conditions

Have car ready

Have car
ready to rent

Provide maintenance
to cars

Plan to be automated

Legend

Plan to be automatedPlan to be automated

Legend

Fig. 5. Fragment of the organizational model selected plans

Four basic steps must be carried out to insert the software system as an actor in the
organizational model:

Step 1. Insert the system actor in the organizational model.
Step 2. Delegate business elements that need to be automated from the business

actors to the system actor. This indicates that the SSA is now responsible for
performing particular actions within the context of business plans.

Step 3. There are plans that require information from the business actors when th-
ese plans are transferred to the SSA. In this case, it is necessary to create new
resource dependencies between the system actor and the business actors.

Step 4. When resource dependencies are created, it is necessary to generate new pl-
ans for sending and receiving resources inside the business actors.

In order to make the application of these guidelines systematic, we have defined a
set of patterns that permits us to delegate business plans and goals toward the SSA.
The proposed pattern language considers all possibilities to delegate business
elements from the business actor towards the SSA. As result of the application of the
pattern language, a new organizational model that contains all the relevant

132 A. Martínez et al.

information for constructing a software system that gives solutions to the problems
detected in the goal reduction process is created.

Table 2 shows a brief description of the proposed pattern language called
“FELRE” (From Early Requirements to Late Requirements).

In the following, a brief explanation of the proposed patterns is presented. The
pattern explanation includes the definition of the specific problem that the pattern
addresses and the proposed solution by the application of the pattern.

Table 2. A brief description of the FELRE patterns

Name of
pattern

Use Element to be
automated

The atomic plan
delegation pattern

To be used when an atomic plan needs to be
delegated to the SSA in order to automate its
execution. The atomic plans are those elements
that are not decomposed into other sub-elements

ActorActor

The composite
element
delegation pattern

To be used when a composite element needs to
be delegated to the SSA in order to automate its
execution. The composite plans are those
elements that are decomposed into other sub-
elements.

ActorActor

The Depender-
Dependee element
delegation pattern

To be used when all the elements of a
dependency relationship (depender-dependum-
dependee) need to be delegated to the SSA in
order to automate its execution. Dependee Depender

Dependee
Actor

Depender
Actor

Dependee Depender

Dependee
Actor

Depender
Actor

The Depender
element
delegation pattern

To be used when only the element of the
depender actor needs to be delegated to the SSA
in order to automate its execution.

Depender
Actor

Dependee
Actor

Depender
Actor

Dependee
Actor

The Dependee
element
delegation pattern

To be used when only the element of the
dependee actor needs to be delegated to the SSA
to automate its execution

Dependee
Actor

Depender
Actor

Dependee
Actor

Depender
Actor

1) The atomic plan delegation pattern
This pattern concerns the delegation of an atomic plan to the SSA, which must fulfill
the following conditions: (1) It is not decomposed into other subplans and (2) It is not
associated with any dependency relationship (Table 2).

Solution: The process to delegate an atomic plan to the SSA is composed of four
steps:

Step 1. Delegate the analyzed atomic plan to the SSA.
Step 2. Determine the roles that the business actor (who was responsible for this
plan) will play after the plan is delegated to the SSA. These roles and their
solutions are described in the following substeps:

Step 2.1. If the original plan owner will play the role of provider of
information to perform the plan (once the plan has been delegated), then a
resource dependency between the actor and SSA must be created in order to
indicate the introduction of information to the software system from the
business actor. The depender of this dependency will be the SSA and the
dependee will be the original plan owner.

 From Early to Late Requirements: A Goal-Based Approach 133

Step 2.2. If the original plan owner will play the role of requester of
information (once the plan has been delegated), then a resource dependency
between the actor and SSA must be created. The depender of this
dependency will be the original plan owner and the dependee will be the
SSA. This new dependency indicates the delivery of information to the
business actor.
Step 2.3. If the original plan owner does not have any interaction with the
SSA to perform the plan, no dependencies must be created.

Step 3. Determine the role that the other business actors play in the delegated
plan. If they want to obtain or to provide information for the plan, then new
dependencies among these actors and the SSA must be created.
Step 4. Analyze the context of the atomic plan. In this step, the atomic plan must
be analyzed in the context of its hierarchical structure in order to determine if its
parent goal must be also automated. In this specific case, the composite plan
delegation pattern must be used.

2) The composite element delegation pattern
This pattern concerns the delegation of a composite element to the SSA. It can be a
plan or a goal, which must fulfill the following conditions: (1) If the composite
element is a plan, then it must be decomposed into other subplans, (2) If the
composite element is a goal, then it must be decomposed only by subplans through
means-end links, and (3) At least one subplan of the composite element has been
delegated to the SSA.

Solution: The process of delegating a composite plan to the SSA is influenced by
the previous delegation of at least one child node to the SSA. The delegation process
is composed of four steps:

Step 1. Analyze the composite element to determine if it can be delegated to the
SSA. When the composite element is a plan, its nodes must be analyzed if at
least one child node of the composite plan was delegated to the SSA. If this
condition is satisfied, then the composite plan must be delegated to the SSA.
When the composite element is a goal, several conditions must be taken into
account to delegate the goal to the SSA. 1) the children nodes of the composite
goal must be plans, and they must be linked by means-end links, and 2) at least
one child node of this goal has been delegated previously to the SSA. If these
two conditions are satisfied, then the goal can be delegated to the SSA.
Step 2. Associate the subplans of the composite plan/goal located in the SSA.
The link used to associate these elements must be the same link that the
composite plan/goal had before being delegated to the SSA.
Step 3. Analyze the influence of this delegation on the business actors.

Step 3.1. If a business actor provides information to the composite plan to
execute the plan, a resource dependency between the actor and the SSA must
be created. The depender of this dependency is the SSA. The new
dependency indicates the reception of information from the business actor to
the SSA.
Step 3.2. If an actor requires information from the composite plan, a resource
dependency between the actor and the SSA must be created. The depender of
this dependency is the business actor and the dependee is the SSA. The new

134 A. Martínez et al.

dependency indicates the delivery of information to the business actor from
the SSA.
Step 3.3. If the delegation of the composite element does not affect any actor
because there is no direct interaction with the element, then no dependency
relationship between the business actors and the delegated element is created.

Step 4. Determine whether the composite plan/goal to be delegated to the SSA is
linked to it through a dependency relationship. In this case, it is necessary to
determine if an associated pattern must be applied. The patterns that can be
applied are: the depender-dependee element delegation pattern or the depender
element delegation pattern.

3) The Depender-Dependee element delegation pattern
This pattern concerns the automation of the elements of the depender actor and the
dependee actor, where the elements to be delegated are associated by a dependency
relationship. To apply this pattern, the following conditions must be fulfilled: (1) The
elements of the business actors associated by the dependency relationships need to be
delegated to the SSA; these elements can be goals or plans. (2)The dependum object
must be a resource or a plan .

Solution: The delegation of the elements of depender and dependee actors to the
SSA focuses on the following issues: a) the roles played by the business actors, b) the
type of the elements involved in the dependency relationship, and c) the type of the
dependum. Therefore, the alternative solutions are classified depending on the
elements to be delegated. 1) First alternative: Plan-Resource-Plan, 2) Second
alternative: Plan-Plan-Plan, and 3) Third alternative: Goal-Plan- Plan.

The first element indicates the depender actor; the second element indicates the
dependum, and the third element belongs to the dependee actor. Due to space
limitations, this paper only details the first alternative.

a) First Alternative (Plan-Resource-Plan):
The first alternative is used when both the depender and the dependee plan must
be delegated to the SSA, and the dependum object is a resource. This indicates the
need to automate the sending and receiving of the resource. The first alternative of
solution is done in third steps:
Step 1. Delegate both the depender actor plan as well as the dependee actor plan
to the SSA, and place a composite plan (in the SSA) which associates these plans
through an AND decomposition. Fig. 6 illustrates this situation.
Step 2. The original resource dependency between the business actors must be
redefined. The depender actor of the new dependency will be the SSA, and, the
plan associated with the dependency will be the plan which needs the resource to
be performed. The selection of the dependee actor in the relationship will depend
on which actor acts as Provider of information to perform the plan.

Dependee
Actor

Depender
Actor

SSA

After the delegationBefore the delegation

Dependee
Actor

Depender
Actor

SSA

After the delegationBefore the delegation

Fig. 6. The delegation of plans of the depender/dependee actors to the SSA

 From Early to Late Requirements: A Goal-Based Approach 135

Step 2.1. If the actor who acts as depender in the dependency relationship
analyzed (that we called O-Der) will play the role of Provider of information
to execute the plan, then the original dependency between the O-Der actor
and original dependee actor (O-Dee) remains the same and a new
dependency between the SSA and O-Der actor is created. These
dependencies indicate that the SSA depends on the business actor to obtain
the information required to execute the plan (Fig. 7).

O-Dee
Actor

O-Der
Actor

SSA

O-Dee
Actor

O-Der
Actor

SSA

Fig. 7. Organizational model generated after applying step 2.1

Step 2.2. In contrast to step 2.1, if the original dependee actor (O-Dee) actor
will play the role of Provider of information to execute the plan, then the
original resource dependency is redefined between the SSA and the O-Dee
actor. The SSA will act as depender. Fig. 8 shows the resource dependency
where the depender actor is the SSA and the dependee actor is the same of
the original dependency.
Step 2.3. If no actor has any interaction with the SSA to execute the delega-
ted plans, no dependencies must be created.

Step 3. Analyze the influence of the delegation of the elements of the depender
and dependee actors on the business actors. When other business actors must
obtain or provide information from/to the delegated plans, new dependencies
among these actors and the SSA must be created. If there is an interaction between
the business actors (O-Der and O-Dee), a new dependency between the actors
must be created.

O-Dee
Actor

SSA

O-Dee
Actor

SSA

Fig. 8. Organizational model generated after applying step 2.2

4) The Depender element delegation pattern
This pattern concerns the automation of the element of the depender actor, where the
analyzed element has associated a dependency relationship. Two conditions must be
fulfilled in order to delegate the analyzed element: (1) An element of the depender
actor needs to be delegated to the SSA; this element can be a goal or a plan, (2) The
dependum object must be a resource or a plan.

Solution: The proposed solution for delegating only the depender actor element is
guided by the dependum object. Therefore, when the dependum is a resource, it will

136 A. Martínez et al.

indicate the need to automate the reception of the resource by the SSA. Otherwise, if
the dependum is a plan, it will indicate the need for the execution of a plan by a
business actor to fulfill the delegated plan or goal. This process is summarized in four
steps:

Step 1. Delegate the depender actor element to the SSA.
Step 2. Analyze the dependum of the dependency; if the dependum is a resource,
then the actor that will provide the resource to the SSA must be determined.

Step 2.1. If the O-Dee will play the role of Provider of information to
execute the plan, (i.e. if the O-Dee provides the resource directly to the SSA)
then the original resource dependency is redefined between the SSA and O-
Dee actor. The SSA will act as the depender actor. Fig. 9 shows a scenario of
the pattern described in this section (on the left). Thus, the element to be
delegated is a plan, and the object dependum is a resource. The model on the
right shows the obtained solution before applying the step 2.1, where the
resource dependency has been redefined between the SSA and the O-Dee
actor to indicate that dependee actor will provide the resource to SSA
directly.

Depender
Actor Dependee

Actor

Before the delegation
SSA O-Dee

Actor

After to apply step 2.1
Depender

Actor Dependee
Actor

Before the delegation
SSA O-Dee

Actor

After to apply step 2.1

Fig. 9. The application of step 2.1 to delegate a plan of the depender actor

Step 2.2. In contrast to step 2.1, if the O-Der is the actor that will play the
role of Provider of information to execute the plan, then the original resource
dependency remains the same, and another resource dependency must be
created between the SSA and the O-Der actor. The depender actor of this
new dependency will be the SSA. Fig. 10 shows the representation of the
solution for this substep.

After to apply step 2.2
Depender

Actor Dependee
Actor

Before the delegation

Original dependency

O-Der
Actor

O-Dee
Actor

SSA

New dependency

After to apply step 2.2
Depender

Actor Dependee
Actor

Before the delegation

Original dependency

O-Der
Actor

O-Dee
Actor

SSA

New dependency

Fig. 10. The application of the step 2.2 to delegate a plan of the depender actor

Step 2.3. If no actor has any interaction with the SSA to execute the
delegated plan, no dependencies must be created.

Step 3. If the dependum object is a plan, the business actor responsible to execute
the plan dependency must be determined.

Step 3.1. If the O-Der is the actor responsible for executing the plan
dependency, the plan dependency must be redefined between the SSA and
the O-Der actor. However, if the O-Dee actor is the one performing the plan

 From Early to Late Requirements: A Goal-Based Approach 137

of the dependency, then it must be redefined between the SSA and the O-Dee
actor. Fig. 11 shows the two scenarios where the dependum is a plan. The
first scenario shows a depender actor plan which must be delegated to the
SSA; after applying step 3.1, the plan dependency must be redefined among
some actors involved in the dependence (the O-Der or the O-Dee actor) and
the SSA. The depender actor is the SSA. On the other hand, the second
scenario of the figure shows a goal associated with a plan (Fig. 11); after
applying step 3.1, both business actors (the dependee/depender) can be
responsible to execute the plan, in order to fulfill the delegated goal.

SSA O-Der
or O-Dee

Actor

Before the delegation After to apply step 3.1

SSA O-Dee
or O-Dee

Actor

Depender
Actor Dependee

Actor

Depender
Actor Dependee

Actor

a) A plan to
be delegated
to the SSA

b) A goal to
be delegated
to the SSA

SSA O-Der
or O-Dee

Actor

Before the delegation After to apply step 3.1

SSA O-Dee
or O-Dee

Actor

Depender
Actor Dependee

Actor

Depender
Actor Dependee

Actor

a) A plan to
be delegated
to the SSA

b) A goal to
be delegated
to the SSA

Fig. 11. Two examples where the dependum object is a plan and the delegated element is a goal
or plan of the depender actor

Step 4. Analyze the influence of the delegation of the depender actor plan on the
business actors. When other business actors must provide information to the
delegated plan, a new resource dependency between the actor and SSA must be
created. The depender of this dependency will be the SSA. When other business
actors require obtain information about the delegated plan, then a new resource
dependency between the actor and SSA must be created. The dependee actor will
be the SSA.

5) The Dependee element delegation pattern
This pattern concerns the automation of the element of the dependee actor, which is
associated by a dependency relationship. This pattern must fulfill the following
conditions (1) One plan of the dependee actor joined by a dependency relationship
needs to be delegated to the SSA, (2) The dependum must be a resource or a plan.

Solution: The proposed solution for delegating only the dependee actor element is
guided by the dependum object. Therefore, when the dependum is a resource, it will
indicate the need to automate the generation of the resource. Otherwise, if the
dependum is a plan, it will indicate a plan delegation from the depender actor to the
dependee actor. This process is summarized in five steps:

Step 1. Delegate the dependee actor plan to the SSA.
Step 2. The dependum of the dependency relationship under study must be
analyzed; if the dependum is a resource, it will be necessary to determine the actor
that will provide the resource to the SSA.

Step 2.1. If the O-Der actor will play the role of Requester of information to
execute the plan, (i.e. if the O-Der provides the resource directly to the SSA)
then the original resource dependency is redefined between the O-Der actor
and the SSA. The SSA will act as the dependee actor. Fig. 12 shows a
scenario of the pattern described in this section (on the left). Thus, the

138 A. Martínez et al.

element to be delegated is a plan, and the object dependum is a resource. The
model on the right of the figure shows the solution obtained after applying
step 2.1, i.e. when the O-Der actor can access the SSA directly in order to
obtain the generated resource by the delegated plan. Thus, the original
resource dependency is redirected from the O-Der actor to the SSA.

Dependee
Actor

Depender
Actor

O-Der
Actor

SSA
Before the delegation After to apply step 2.1Dependee

Actor
Depender

Actor
O-Der
Actor

SSA
Before the delegation After to apply step 2.1

Fig. 12. Organizational model after applying step 2.1 to automate a dependee plan

Step 2.2. In contrast to step 2.1, if the O-Der does not have access to the
SSA to obtain the resource generated by the delegated plan, the original
resource dependency remains the same and another resource dependency
must be created between the SSA and the O-Dee. The dependee actor of this
new dependency will be the SSA. Fig. 13 shows the delegation of plan of the
dependee actor. The plan has a resource dependency associate to it. Once the
plan is delegated to the SSA, the dependency relationship remains the same
between the business actors and a new resource dependency between the
SSA and O-Der actor is created. In this case the SSA will act as provider of
information of the delegated plan.

New
dependency

Dependee
Actor

Depender
Actor

Before the delegation
O-Dee
Actor

SSAAfter to apply step 2.2

Original
dependency

O-Der
Actor

New
dependency

Dependee
Actor

Depender
Actor

Before the delegation
O-Dee
Actor

SSAAfter to apply step 2.2

Original
dependency

O-Der
Actor

Fig. 13. Organizational model after applying step 2.2 to automate a dependee plan

Step 3. Analyze the dependum object in the dependency relationship under study;
if the dependum is a plan, the dependency plan must be redirected between the O-
Der actor and the SSA.
Step 4. Analyze the influence of this delegation in the business actors.

Step 4.1. When a business actor provides information to a delegated plan to
execute it, a resource dependency between the actor and the SSA must be
created. The depender actor of this new dependency will be the SSA. The
new dependency indicates the reception of information from the business
actor to the SSA.
Step 4.2. When an actor requires information from the delegated plan, a
resource dependency between the actor and SSA must be created. The

 From Early to Late Requirements: A Goal-Based Approach 139

depender of this dependency will be the business actor. This new
dependency indicates the delivery of information to the business actor from
the SSA.

Step 5. If more than one dependency relationship is generated during the
delegation of the dependee actor plan to the SSA, then they must be labeled with
the same number in order to indicate their association.

In order to apply the proposed patterns, the following steps must be performed: (1)
Identify the relevant plans to be automated. In this step, we use the plans selected in
the goal analysis phase (Fig. 5). (2) Place the SSA into the new business model; also
place all the actors that have plans, goals, or dependency relationships to be
automated. (3) Transfer the plans or goals to be automated to the SSA. To perform
this step, each goal decomposition tree in the business actor must be analyzed. Then
the appropriate pattern to delegate the plans or goals to be automated to the SSA must
be used.

Fig. 14 shows a partial view of the organizational model generated through the use
of the pattern language. This model includes the SSA and the actors that interact with
it. The new organizational model represents the final result of the application of the
goal analysis and the pattern language. In this model, the software system is
represented as an actor (car rental system). The specification of the internal elements
of this actor represents all the functionalities that this actor must provide for fulfilling
the business goals. The model also represents the interactions among the business
actors and the software system.

Obtain
customer info

Manage car
rentals

Analyze
customer Formalize

reservation
Analyze car
availability

Analyze the
customer info

Search the
customer info

Register
paymentRegister

reservation

Employee

Analyze
customer Formalize

reservation

Search car
availability

Obtain reservation
info

Search car
availability

Customer

Customer
Info

Reservation
info

Customer
Info

Reservation
info

Other
Branches

Customer
status

Available
cars

Available
cars Register

reservation

Payment

Payment

Car Rental
System

Fig. 14. Partial view of the organizational model which includes the software system actor

140 A. Martínez et al.

5 Related Work

Nowadays, several research efforts use goal mechanisms for supporting the
requirements elicitation process. One of the most relevant works in this field is the
KAOS approach [12][13][14]. KAOS provides formal rules for deriving requirements
based on theories of formal specification languages. This method analyzes functional
and non-functional requirements.

However, the use of this approach is restricted to analysts who are used with
formal methods. KAOS also provides only partial support for goal reasoning about
the alternatives to satisfy goals.

Another goal oriented method is GBRAM (Goal Based Requirements Analysis
Method) [15][16], which is focused on the generation of operational requirements
from high level goals. However, this method does not establish a clear distinction
between the information used in the early and late requirements phase [17]. As a
consequence, GBRAM does not offer full support of the development process.
Another important research contribution is the NFR Framework proposed in [4]. This
approach focused on analyzing the impact of non-functional requirements in the
development process.

Regarding organizational modeling methods, at present, several research efforts
have been made to accurately represent an organizational model (early requirements)
[6][18][19]. In these works, conceptual primitives represent business goals,
organizational actors and dependencies among these actors. There are also several
research works focused on the development of requirements models (late
requirements) to represent the expected functionality of the information system
[2][20][21][22]. However, the problem of linking business models with requirements
models in methodological way has still not been solved.

The main difference among current goal-based approaches and organizational
techniques with our proposed method is the definition of a systematic approach to
guide the analyst in the construction of an information system from the information of
the organizational context. To do this, the method provides a pattern language that
helps to join early and late requirement models in a systematic approach.

6 Conclusions and Future Work

In this paper, we propose a methodological approach to identify relevant plans to be
automated by an information system is proposed. The method is composed of two
main processes: the goal analysis and the application of the pattern language. The
objective of the first process is to identify the relevant plans to be automated. To do
this, the goals are decomposed until the level of specific plans to satisfy the goals is
reached. In this process, the quality factors that the enterprise wants to fulfill (using a
software system) are identified, and the contradictions and contributions among the
plans and the quality factors are analyzed. All this information concerns the early
requirements phase.

The objective of the second process is to delegate the relevant plans to be
automated to a new business actor that represents the software system. This process is
carried out through a pattern language which permits us to guide the construction of

 From Early to Late Requirements: A Goal-Based Approach 141

the new organizational model with the SSA. The new organizational model explicitly
represents the interactions among software and business actors, and the organizational
context in which the system will be used. In this way, the proposed pattern language
will permit to join the early and late requirements phases in a systematic way.

As the reader may have noticed already, the proposed approach could be applied
not only in agent-oriented software development environments, but also in traditional
object-oriented software development methodologies. In particular, an object-oriented
conceptual schema could be obtained from a precise agent-oriented system
description, making more robust a model-based software production process.

Object-oriented development methods can be positively influenced by the kind of
analysis performed in agent-oriented methods. The use of goals, softgoals, plans,
dependencies, and intentional concepts can play a relevant role in correctly capturing
the semantics of the enterprise, which will be the basis for determining the expected
functionality of the information system. At present, object-oriented techniques are not
well-equipped to represent, in the correct abstraction level, the social aspects that are
fundamental to understand the organizational context before starting to determine the
expected functionalities of the system-to-be. This is why we propose to merge agent-
oriented techniques with object-oriented methodologies in order to provide a robust
software production process.

The research work presented in this paper is part of a more general project
proposed to include an organizational modeling phase in the OO-Method approach.
This is a model-transformation method that automatically generates complete
information systems from object-oriented conceptual models. Currently, we are
working on the improvement of the rules to generate an object-oriented conceptual
schema from the organization model generated in the proposed approach.

References

1. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: TROPOS: an agent-
oriented software development methodology. Journal of Autonomous Agents and
Multiagent Systems 8(3), 203–236 (2004)

2. Pastor, O., Gómez, J., Infrán, E., Pelechano, V.: The OO-Method approach for information
systems modeling: from object-oriented conceptual modeling to automated programming.
Information Systems 26(7), 507–534 (2001)

3. Pastor, O., Ramos, I.: OASIS 2.1.1: A Class-Definition Language to Model Information
Systems Using an Object-Oriented Approach, 3rd edn. Servicio de Publicaciones.
Technical University of Valencia, Spain (1995)

4. Chung, L., Nixon, B., Yu, E., Mylopoulos, J.: Non-Functional Requirements in Software
Engineering. Kluwer Academic Publishers, Dordrecht (2000)

5. Martinez, A., Pastor, O., Estrada, H.: A pattern language to join early and late
requirements. Journal of Computer Science and Technology, special issue on Software
Requirements Engineering 2(5), 64–70 (2005)

6. Kolp, M., Giorgini, P., Mylopoulos, J.: Organizational Patterns for Early Requirements
Analysis. In: Eder, J., Missikoff, M. (eds.) CAiSE 2003. LNCS, vol. 2681, pp. 617–632.
Springer, Heidelberg (2003)

7. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Modelling Social and Individual
Trust in Requirements Engineering Methodologies. In: Herrmann, P., Issarny, V., Shiu,
S.C.K. (eds.) iTrust 2005. LNCS, vol. 3477, pp. 161–176. Springer, Heidelberg (2005)

142 A. Martínez et al.

8. Yu, E.: Modelling Strategic Relationships for Process Reengineering. Published Doctoral
dissertation, University of Toronto, Canada (1995)

9. Boehm, B., Brown, J.R., Kaspar, H., Lipow, M., McLeod, G., Merritt, M.: Characteristics
of Software Quality. In: TRW Series of Software Technology, Amsterdam (1978)

10. International Standard ISO/IEC 9126: Quality Characteristics and Guide Lines for their
use, Switzerland (2001)

11. Giorgini, P., Mylopoulos, J., Sebastiani, R.: Goal-Oriented Requirements Analysis and
Reasoning in the Tropos Methodology. Engineering Applications of Artificial
Intelligence 18, 159–171 (2005)

12. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal directed requirements acquisition.
Science of Computer Programming 20(1-2), 3–50 (2003)

13. Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour. In: Invited
minitutorial, Proceeding 5th IEEE International Symposium on Requirements Engineering,
Canada, pp. 249–263 (2001)

14. Letier, E., van Lamsweerde, A.: Reasoning about Partial Goal Satisfaction for
Requirements and Design Engineering. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS,
vol. 3017, pp. 53–62. Springer, Heidelberg (2004)

15. Anton, A.: Goal Identification and Refinement in the Specification of Software-Based
Information Systems. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, USA (1997)

16. Potts, C., Takahashi, K., Anton, A.: Inquiry-Based Requirements Analysis. IEEE
Software 11(2), 21–32 (1994)

17. Yu, E.: Towards Modeling and Reasoning support for Early-Phase Requirements
Engineering. In: RE’97. Proceedings of the 3rd. IEEE International Symposium on
Requirements Engineering, pp. 226–235. IEEE Computer Society, Los Alamitos (1997)

18. Bubenko, J.A.: Worlds in Requirements Acquisition and Modeling. In: Kangassalo, H., et
al. (eds.) Information Modeling and Knowledge Bases VI, pp. 159–174. IOS Press,
Amsterdam (1995)

19. Cesare, S., Lycett, M.: Business Modelling with UML, distilling directions for future
research, Proceedings of the Information Systems Analysis and Specification. pp. 570-579.
Spain (2002)

20. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley, Reading (2001)
21. Kulak, D., Guiney, E.: Use Cases requirements in context. Addison-Wesley, Reading

(2000)
22. Ralyté, J., Rolland, R., Plihon, V.: Method Enhancement with Scenario Based Techniques.

In: Jarke, M., Oberweis, A. (eds.) CAiSE 1999. LNCS, vol. 1626, pp. 103–118. Springer,
Heidelberg (1999)

M. Kolp et al. (Eds.): AOIS 2006, LNAI 4898, pp. 143–163, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Formal Description Language for Multi-Agent
Architectures

Stéphane Faulkner 1, Manuel Kolp 2, Yves Wautelet 2, and Youssef Achbany2

1 Information Management Research Unit, University of Namur, 5000 Namur, Belgium
stephane.faulkner@fundp.ac.be

2ISYS- Information Systems Research Unit, IAG-Louvain School of Management,
Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium

{kolp,wautelet,achbany}@isys.ucl.ac.be

Abstract. Multi-Agent Systems (MAS) constitute a highly promising software
architectural approach for modern application domains such as peer-to-peer and
ubiquitous computing, information retrieval, semantic web services or e-
business. Unfortunately, despite considerable work in software architecture dur-
ing the last decade, few research efforts have aimed at truly defining languages
for designing such architectures. This paper identifies the foundations for an
architectural description language (ADL) to specify multi-agent system archi-
tectures. We propose a set of system design concepts based on the BDI (belief-
desire-intention) agent model and existing classical ADLs. We conceptualize it
with the Z specification language to capture a “core” model of structural and
behavioural elements fundamental to an architecture description for BDI-MAS.
We partially apply it on a data integration system example to illustrate our
proposal.

1 Introduction

In the last few years, software applications have increased in complexity and stake-
holders’ expectations principally due to new Internet-centric application areas. These
areas demand robust software that can operate within a wide range of environments
and can evolve over time to cope with changing requirements. Moreover, such soft-
ware has to be highly customizable to meet the needs of different kinds of users and
sufficiently secure to protect personal data and other assets on behalf of its stake-
holders.

Not surprisingly, researchers are looking for new software paradigms that cope
with such requirements. One source of ideas that is gaining popularity for designing
such software is the area of multi-agent systems (MAS) architectures. They appear to
be more flexible, modular and robust than traditional architecture including object-
oriented ones. They tend to be open and dynamic in the sense that they exist in a
changing organizational and operational environment where new components can be
added, modified or removed at any time. Research in this area has notably empha-
sized that an MAS architecture is conceived as a society of autonomous, collabora-
tive, and goal-driven software components (agents), much like social organizations.

144 S. Faulkner et al.

Such architectures become rapidly complicated due to the ever-increasing complex-
ity of these new business domains and their human or organizational actors. Practitio-
ners have come to realize that getting a complex architecture right is a critical success
factor for the system life-cycle. They have recognized the value of making explicit
architectural descriptions and choices in the development of new software: a rigorous
architectural design can help ensure that a system will satisfy key requirements in such
areas as performance, reliability, portability, scalability and interoperability [27].

To this end, over the past decade, software architecture has received increasing at-
tention as an important subfield of software engineering. A number of researches has
proposed architectural description languages [1, 12, 18, 20, 26] for representing and
analysing architectural designs. An architectural description language (ADL)
provides a concrete syntax for specifying architectural abstractions in a descriptive
notation. Architectural abstactions concern the structure of the system’s components,
their behaviour and their interrelationships.

Unfortunately, despite this progress, few research efforts have aimed at truly defining
description languages for MAS architectures. This paper deals with this issue in
defining a “core” set of structural and behavioural concepts, including relationships and
constraints, that are fundamental to proposing an architectural description language.
This language, called SKwyRL-ADL1, is aimed at describing BDI multi-agent systems.

The paper is structured as follows. Section 2 overviews the notions of agent and
MASs, identifies the main concepts of the BDI model we will use in our ADL and
discusses the need for such a language at architectural design stage. The section also
outlines research limitations. Section 3 models SKwyRL-ADL and details some ele-
ments using the Z specification language. Section 4 partially applies our ADL to
characterize the architecture of a simple data integration system. Finally, Section 5
summarizes the contributions of the paper and discusses some possible extensions.

2 Context

This section presents the context of the research. In section 2.1, the agent-concept,
multi-agent systems as well as the BDI model are briefly defined. Section 2.2 intro-
duces SKwyRL-ADL and summarizes the overall software development process it is
part of. Section 2.3 justifies the need for an architectural description languages while
section 2.4 underlines research limitations and future works.

2.1 The BDI Model

An agent defines a system entity, situated in some environment, that is capable of
flexible autonomous action in order to meet its design objective [20].

An agent can be useful as a stand-alone entity that delegates particular tasks on be-
half of a user. However, in the overwhelming majority of cases, agents exist in an
environment that contains other agents. Such environment is a multi-agent system that
can be defined as an organization composed of autonomous and proactive agents that
interact with each other to achieve common or private goals.

1 Socio-Intentional ArChitecture for Knowledge Systems & Requirements ELicitation (www.

isys.ucl.ac.be/ skwyrl)

 A Formal Description Language for Multi-Agent Architectures 145

In order to reason about themselves and act in an autonomous way, agents are usu-
ally built on rationale models and reasoning. An exhaustive evaluation of these mod-
els would be out of the scope of this paper. However, a simple yet powerful and
mature model coming from cognitive science and philosophy that has received a great
deal of attention, is the Belief-Desire-Intention (BDI) model [3, 5]. This approach has
been intensively proposed as a keystone model in numerous agent-oriented develop-
ment environments such as JACK or JADEX. The main concepts of the BDI agent
model (in addition to the concept of agent itself) are:

- Beliefs that represent the informational state of a BDI agent, that is,
what it knows about itself and the world;

- Desires (or goals) that are its motivational state, that is, what the agent
is trying to achieve;

- Intentions that represent the deliberative state of the agent, that is, which
plans the agent has chosen for possible execution

2.2 SKwyRL-ADL: An Architecture-Centric Process for MAS Development

The idioms proposed in this paper take place in the architectural design discipline of
the agent-oriented Tropos methodology [7] and is described here in the context of a
broader methodology called I-Tropos [30] based on Tropos and driven by the i*
framework and organized following an iterative software development life cycle. Due
to lack of space, we only focus here on architectural design, the stage at which the
ADL takes place. This discipline is presented in this section as a sequential workflow
but the reader has to keep in mind that they are “small” parts of a broader highly itera-
tive process.

The process description that follows uses the SPEM (Software Process Engineer-
ing Metamodel) notation. Using this formalization, a discipline is modeled as a work-
flow in which each ProcessRole performs a series of Activities. WorkProducts
(Documents or Models) are inputs or outputs of those activities. Fig. 1 summarizes
the SPEM concepts we use. A complete specification of the SPEM notation can be
found in [23] while the SPEM description of the disciplines is described in [30].

SPEM, i* and NFR diagrams in this paper are all designed and drawn with the
DesCARTES tool [16].

Fig. 1. SPEM Notation

146 S. Faulkner et al.

Fig. 2. Architectural Design Workflow

The objective of the architectural design discipline is to organize the dependencies
between various subactors identified in previous disciplines in order to meet func-
tional and nonfunctional requirements of the system.

Fig. 2 describes the Architectural Design discipline workflow. The Software Ar-
chitect uses a non-functional requirements analysis to select the most appropriate

 A Formal Description Language for Multi-Agent Architectures 147

Architectural Style for the module to-be from the Architectural Styles Catalogue (see
[11]). If such a style has been selected, new actors and their identified intentions are
added to the Strategic Dependency and Strategic Rationale Models according to the
semantics of the selected style. Finally, the System Architecture is formally specified
with the ADL presented in this paper.

For a long time, the exploitation of software architectures and architectural styles
was informal and ad hoc. Architectural configurations were typically described using
informal box-line diagrams in design documentation, providing little information
about the computations represented by boxes, the interface of the components, or the
nature of their interactions. This lack of information severely limited the usefulness of
these diagrams for reasoning and analyzing system architecture.

In recent years, there have been several proposals for providing a sounder basis for
describing and reasoning about software architecture. In particular, modeling nota-
tions known as architecture description languages have emerged. Architectural de-
scription languages are formal languages that are used to specify the architecture of a
system [27].

2.3 The Need for an Architectural Description Language

Fundamentally, there are five main benefits of formally specifying the architecture of
a software system:

- Understanding: Architectural description helps us better comprehend large
systems by presenting them at a level of abstraction at which a system high-
level design can be easily understood [13, 25]. Moreover, at its best, archi-
tectural description exposes the high-level constraints on system design, as
well as the rationale for making specific architectural choices;

- Reuse: Architectural description support reuse at multiple levels. Current
work on reuse generally focuses on component libraries. Architectural design
supports, in addition, both reuse of large components and also frameworks,
and architectural design patterns has already begun to provide evidence for
this [6, 21];

- Construction: An architectural description provides a partial blueprint for
development by indicating the major components and dependencies between
parts of a system’s implementation, clearly identifying the major internal
system interfaces, and constraining what parts of a system may rely in ser-
vices provided by other parts;

- Evolution: By making explicit the “load-bearing walls” of a system, system
maintainers can better understand the ramifications of changes, and thereby
more accurately estimate costs of modifications. Moreover, architectural de-
scriptions separate concerns about the functionality of a component from the
ways in which that component is connected to (interacts with) other compo-
nents, by clearly distinguishing between components and mechanisms that
allow them to interact. This separation allows one to more easily change
connection mechanisms to handle evolving concerns about performance in-
terpretability, prototyping, and reuse;

- Analysis: Architectural descriptions provide new opportunities for analysis,
including system consistency checking, conformance to constraints imposed

148 S. Faulkner et al.

by an architectural style, conformance to quality attributes and, dependence
analysis for architectures build in specific styles [8, 14].

2.4 Limitations

Much work remains to be done on improving MAS architecture design. Important
directions for future developments include the following:

- Our research does not address automated support of consistency analysis and
compatibility of SKwyRL-ADL specifications. Automating the analysis re-
duces the effort required to perform the analysis, and allows to find problems
or properties that a human analyst would have missed. We should define a
set of rules to perform most of the standard SKwyRL-ADL consistency that
could be included in commercial verification tools such as PVS [24]. Once
the architect has developed a candidate specification, he could run the tool on
the specification which responds either with a guarantee that the consistency
checks are satisfied or localization of the problem in the specification;

- We represent architectural specifications as isolated logical and textual for-
mulations. Some authors propose to integrate a graphical representation of
architectural aspects in structural and behavioural diagrams. The opportunity
of expressing architectural aspects, for example within the UML representa-
tions, should be studied;

- Probably the most pressing short term need for research on our architectural
framework is to gain experience with its use. In this paper we have applied it
on only one two real-world case study. By doing so, we have explored the
applicability of SKwyRL-ADL and shown how our framework can help the
design of MAS architectures. However, it should be tested on larger cases,
which perhaps require other organizational styles;

- A main motivation behind ADL is the possibility of reusing them during im-
plementation. Numerous CASE tools such as Rational Rose include code
generators for object-oriented design specification. According to the primi-
tives the BDI agent programming languages, we could extend the design
process of our framework with code generation capability. Then, we should
propose a CASE tool to automatically generate the code skeleton of future
multi-agent information system from their specifications with SKwyRL-
ADL. This work is in progress within the DesCARTES tool [16].

3 SKwyRL-ADL

Fig. 1 introduces the main concepts and relationships of SKwyRL-ADL. Each of
these entities has been identified from the generic features of current ADLs and the
concepts defined through the theoretical BDI agent model.

The ADL is composed of two sub-models, a structural and a behavioural formal-
ization. The structural model captures the primitive entities that support the construc-
tion of configurations. They represent the elements that are “instantiated” to form an
architecture. The behavioural model captures the informational and motivational
states that form the intentional behaviour of the agent.

 A Formal Description Language for Multi-Agent Architectures 149

The next sub-sections describe the models and detail some of their concepts using
the Z specification language [29]. Z is widely used as a formal specification language
in the field of software architecture and has been shown to be clear, concise and rela-
tively easy to learn.

Fig. 3. Conceptualization of SKwyRL-ADL

3.1 The Behavioural Model

The behavioural model illustrated in Fig. 3 is composed of eight main design entities:
agent, knowledge base, goal, capability, belief, plan, event, action and service.

An agent needs knowledge about its environment in order to make good decisions.
Knowledge is contained in the agent in the form of one or many knowledge bases
structuring its informational state.

A knowledge base consists of a set of beliefs the agent has about its environment.
A belief represents a view of the current environment of an agent.

However, beliefs about the current state of the environment are not always enough
to decide what to do. In other words, in addition to a current state description, the
agent needs goal information. A goal describes an environment state that is (or is not)
desirable. An agent pursues one or many goals that represent its motivational state.

150 S. Faulkner et al.

The intentional behaviour of an agent is represented by its capabilities to react to
events. A capability is a set of events that an agent can handle, post or send to its
environment and a set of plans. An event is generated either by an action that modi-
fies beliefs or adds new goals, or by services provided by another agent. Note that
services also appear in the structural model because they involve interactions among
agents that compose the MAS.

Interactions serve as basic elements to support the construction of configurations.
An event may invoke (trigger) one or more plans; the agent is committed to executing
one of them, that is, it becomes its intention. A plan defines the sequence of actions or
services to be chosen by the agent to accomplish a task or fulfil a goal. An action can
query, add or remove beliefs, generate new events or submit new goals.

Due to lack of space, we only detail and formalize below the belief, goal and plan
aspects of the model. We refer the reader to [11] for a complete formalization of the
model.

Belief. A belief is a predicate describing a set of states about the current agent envi-
ronment being either true or false.

Beliefs describe the environment of the agent in terms of states of objects with in-
dividual identities and properties, and relations on objects as being either true or false.
We use predicate symbols to specify a particular relation that holds (or fails to hold)
between several objects, and terms to represent objects. Each term can be build from
constant, variable or function symbols. An expression can also be required to refer to
an object. In this case, a complex term can be formed by a function symbol followed
by a parenthesized list of terms as arguments to the function symbol.

From the above primitives, we can define an AtomicBelief. The set of all predicate,
function, constant and variable symbols are denoted by [PredSymb], [Function],
[Constant], and [Variable], respectively. An AtomicBelief is formed from a predicate
symbol followed by a sequence of terms.

[PredSymb]
[Funtion]
[Constant]
[Variable]
[Term]:= Function(Term,…) | Constant | Variable

 AtomicBelief

head: PredSymb
terms: seq Term

head ≠ ∅ ∧ terms ≠ ∅

A Belief is specified either as an AtomicBelief, a negated AtomicBelief, a series

of AtomicBeliefs connected using logic connectives, or an AtomicBelief character-
ized with a temporal pattern. The following temporal patterns are used in SKwyRL-
ADL: ○ (in the next state), ● (in the previous state), ◊ (some time in the future), ♦

 A Formal Description Language for Multi-Agent Architectures 151

(some time in the past), □ (always in the future), ■ (always in the past), W (always in
the future unless), and U (always in the future until).

[Belief]:= AtomicBelief | ¬AtomicBelief | Temp_Pattern AtomicBelief

 | AtomicBelief Connective AtomicBelief

[Connective] → ∧ | ∨ | ⇒

[Temporal_Pattern]:= ○ | ● | ◊ | ♦ | □ | ■ | W | U

Goal. A goal describes an environment state an agent wants to bring about.

Beliefs about the current state of the environment are not always enough to decide
what to do.

The goal information is an operational objective to be achieved by an agent. Opera-
tional means that the objective can be formulated in terms of appropriate state transi-
tions under the control of one agent.

To this end, we consider goals according to the four following patterns [9]:

− Achieve: P ⇒ ◊Q
◊Q means “state Q holds in the current or in some future state”

− Cease: P ⇒ ◊¬Q
− Maintain: P ⇒ □Q

□Q means “state Q holds in the current and in all future states”
− Avoid: P ⇒ □¬Q

With respect to beliefs, goals can be specified as follows:

[GoalPattern] := Achieve | Cease | Maintain | Avoid
[GoalStatus]:= Fulfilled | Unfulfilled

 Goal

head: GoalPattern
state: Belief
status: GoalStatus

head ≠ ∅ ∧ state ≠ ∅

(∀ g: Goal) ∧ g.status = Fulfilled
 ⇒ (∃ blset = {bl1,…,bln: Belief} ∧ g.state ⊆ blset)

State explicitly describes (in terms of beliefs) the environment in which the goal is

fulfilled. The status indicates whether the goal has been fulfilled or not.
The goal patterns influence the set of possible agent behaviours: achieve and cease

goals generate actions, plans or events, while maintain and avoid goals restrict them.
When a goal is required, the agent identifies a set of plans to achieve or maintain it.

152 S. Faulkner et al.

From then on, the agent chooses, according to its current beliefs, which of these plans
will be executed.

Plan. A plan defines a sequence of actions or/and services to accomplish a task or
achieve a goal.

Plans are selected by agents in the way we describe below. Selected plans constrain
the agent behaviour and act as intentions. A plan consists of:

- an invocation condition detailing the circumstances, in terms of beliefs,

events or goals, that cause the plan to be triggered;
- a context that defines the preconditions of the plan, i.e., what must be be-

lieved by the agent for a plan to be selected for execution;
- the plan body, which specifies either the sequence of formulae that the agent

needs to perform, a formula being either an action or a service (i.e., action
that involves interaction with other agents) to be executed;

- an end state that defines the postconditions under which the plan is suc-
ceeded;

- a set of services or actions that specify what happens when a plan fails or
succeeds.
A Plan can be specified as follows:

[PlanName]
[AtomicPlan]:= Action | Service
[Invocation]:= Belief | Goal | Event

 Plan

name: PlanName
invocation: ℙ Invocation
context: ℙ Belief
body: seq AtomicPlan
endState: ℙ Belief
succeed: seq Atomicplan
failure: seq AtomicPlan

name ≠ ∅ ∧ invocation ≠ ∅ ∧ body ≠ ∅

A Plan is said to have succeeded when it reaches its end state, and to have failed
when not in the end state and there are no available actions or services.

3.2 The Structural Model

As illustrated in Fig. 3, the structural model is composed of seven main design enti-
ties: agent, configuration, architecture, interface, effector, sensor and service. It de-
scribes the interaction among agents that compose the MAS.

 A Formal Description Language for Multi-Agent Architectures 153

Configurations are the central concept of architectural design, consisting of inter-
connected sets of agents. The topology of a configuration is defined by a set of bind-
ings between provided and required services.

An agent interacts with its environment through an interface composed of sensors
and effectors. An effector provides a set of services to the environment. A sensor
requires a set of services from the environment. A service is an operation performed
by an agent that interacts by entering into a dialogue with one or several agents.

Finally, the whole MAS is specified with an architecture which is composed of a
set of configurations. The concept of architecture allows representing agents by one or
more detailed, lower-level configuration descriptions.

Due to lack of space, the rest of this section only details and specifies the con-
figuration aspeect. We refer the reader to [11] for a complete formalization of the
model.

Configuration. A configuration is an interconnected set of agent instances.
An MAS is represented as a configuration of instantiated agent components. The

topology of the system is defined by a set of bindings between services provided by
effector instances and services required by sensor instances.

The configuration separates the descriptions of composite structures from the ele-
ments in those compositions. This allows reasoning about the composition as a whole
and changing the composition without having to examine each of the individual com-
ponents in a system.

Because there may be more than one use of a given agent in an MAS, we distin-
guish the different instances of each agent type that appear in a configuration. To this
end, we define the type Instance representing the name given to an agent instance that
has been instantiated within a configuration:

[IAgent]

Instantiating an agent also has the secondary effect of instantiating the services that
are defined by its interface. We define provided and required service instance type
such as follows:

[IRService]
[IPService]

Once the instances have been declared, a configuration is specified by describing
the collaborations. The collaborations define the topology of the configuration, show-
ing which agent instance participates in which interactions. This is done by defining a
one-to-many mapping relation between provided and required services.

A configuration can be then specified as follows:

 [AgentDescription]
 [IAgent]
 [Instance] := IAgent | IPService | IRService

154 S. Faulkner et al.

 Configuration

description: AgentDescription
instance: Instance
collaboration: (IAgent X IRService) (IAgent X IPSer-

vice)

description instance collaboration

4 A Data Integration Case Study

GOSIS (aGent-Oriented Source Integration System) provides an MAS architecture to
support the integration of information coming from dynamic, distributed heterogene-
ous sources. Significant parts will be used illustrate the formal SKwyRL-ADL speci-
fication.

The architecture of GOSIS in Fig. 2 is modelled in i* [32]. Each node represents an
agent component and each link between two agents indicates that one agent depends
on the other for some dependum. The type of the dependency describes the nature of
the dependum. Goal dependencies represent delegation of responsibility for fulfilling
a goal; softgoal dependencies are similar to goal dependencies, but the fulfilment of
the softgoal cannot be defined precisely; task dependencies are used in situations
where one agent is required to do a specific activity for the other agent; resource de-
pendencies are used to model that one agent is required to provide a specific resource
to the other agent.

As shown in Fig. 2, agents are represented as circles; dependums – goals, soft-
goals, tasks and resources – are respectively represented as ovals, clouds, hexagons
and rectangles; dependencies have the form depender → dependum → dependee.

GOSIS can be described as follows. When a user wishes to send a data request, it
contacts the broker agent, which serves as an intermediary to select one or more me-
diator(s) that can satisfy the user information needs. Then, the selected mediator(s)
decompose(s) the user’s query into one or more sub-queries regarding the appropriate
information sources, eventually compiles and synthesizes results from the source and
returns the final result to the broker.

When the mediator identifies repetitively the same user information needs, this in-
formation of interest is extracted from each source, merged with relevant information
from the other sources and stored as knowledge by the mediator. Each stored knowl-
edge constitutes a materialized view the mediator has to maintain up-to-date.

A wrapper and a monitor agents are connected to each information source. The
wrapper ensures two roles. It has to translate the sub-query issued by the mediator
into the native format of the source and translate the source response into the data
model used by the mediator.

The monitor is responsible for detecting changes of interest (e.g., a change that af-
fects a materialized view) in the information source and for reporting them to the
mediator. Changes are then translated by the wrapper and sent to the mediator.

 A Formal Description Language for Multi-Agent Architectures 155

It may also be necessary for the mediator to obtain information concerning the
localization of a source and its connected wrapper able to provide current or future
relevant information. This kind of information is provided by the matchmaker agent,
which lets the mediator directly interact with the correspondent wrapper. The
matchmaker plays the role of a “yellow-page” agent. Each wrapper advertises its
capabilities by subscribing to the yellow page agent.

Finally, the multi-criteria analyzer reformulates a sub-query (sent by a mediator to
a wrapper) through a set of criteria in order to express the user preferences in a more
detailed way, and then refines the possible domain of results.

Fig. 4. The GOSIS Architecture

The architecture described in Fig. 4 can serve as a basis for understanding and dis-
cussing the assignment of system functionalities, but it is not enough to provide a
precise specification of the system details.

An ADL will complement it with a concrete specification to formally detail the
system architecture. In the following, we partially present the SKwyRL-ADL specifi-
cation of some aspects of the two main components of GOSIS: the mediator and the
wrapper. We illustrate some concepts detailed in Section 3 (belief, goal, plan and
configuration) plus other concepts introduced in Fig. 3 (agent, knowledge base, ser-
vice and capabilities). We refer the reader to [11] for a more complete specification of
GOSIS.

Fig. 3 shows a high-level formal description of the mediator and the wrapper
agents identified in Fig. 4.

Three aspects of each agent component are of concern: the interfaces representing
interaction in which the agent will participate, the knowledge bases defining the agent
knowledge capacity and the capabilities defining agent behaviours.

Interface. The agent interface consists of a number of effectors and sensors for the
agent. Each effector provides a service that is available to other agents, and each sen-

156 S. Faulkner et al.

sor requires a service provided by another agent. The correspondence between a re-
quired and a provided service defines an interaction. For example, the Mediator needs
the query_translation service that the Wrapper provides.

Such interface definition points out two aspects of an agent. Firstly, it indicates the
expectations it has about the agents with which it interacts. Secondly, it reveals that
the interaction relationships are a central issue of the architectural description. Such
relationships are not only part of the specification of the agent behaviour but reflect
the potential patterns of communication that characterize the ways the system reasons
about itself.

Agent: { Mediator
Interface:

Sensor[require(query_translation)]
Sensor[require(query reformulation)]
Sensor[require(results)]
Sensor[require(locate_wrapper)]
Sensor[require(change_advertizings)]
Effector[provide(found_items)]

 KnowledgeBase:
Results_KB
MatchMaker_Info_KB
DataManagement_KB
Request_KB
Notification_KB

Capabilities:
Handle_Request_CP
Handle_Results_CP
Materialized_Views_CP
Wrapper_Localization_CP
Handle_Change_CP }

Agent: { Wrapper
Interface:

Effector[provide(query_translation)]
Effector[provide(results)]
Effector[provide(subscription_info)]
Sensor[require(multiCriteria_query)]
Sensor[require(change)]

KnowledgeBase:
WrapperSubscription_KB
Translation_Management_KB

Capabilities:
Translate_Query_CP
ProvideResults_CP
Subscription_CP }

Fig. 5. Mediator and Wrapper Structural Descriptions

The required query translation service is described in greater detail in Fig. 6. We
can see that the mediator (sender) initiates the service by asking the wrapper (re-
ceiver) to translate a query. To this end, the mediator provides to the wrapper a set of
parameters allowing the definition of the contents of this query. Such a mediator
query is specified as a belief with the predicate search and the following terms:

search(RequestType,ProductType(+),FilteredKeyword(+))

Each term represents, respectively, the type of the request (normal request or ad-
vanced in the case of multi-criteria refinement), the type of product and one or many
keywords that must be included in or excluded from the results.

Service:

performative: Ask(query_translation)
sender: Mediator
parameters: rt: RequestType ∧ pt:ProductType ∧ fk(+):FilteredKeyword
receiver: Wrapper

Affect: Add(Translation_Management_KB, search(rt,pt,fk(+))

Fig. 6. Query_Translation Service Description

 A Formal Description Language for Multi-Agent Architectures 157

The Affect indicates that a new search belief is added to the Translation _
Management knowledge base of the wrapper.

Knowledge Base. KBs structure the informational state of the agents. Fig. 7 shows
the specification of the Translation_Management KB. The content of this KB con-
cerns the specific information needed by the wrapper to translate a query. This infor-
mation is represented by the following beliefs:

− source_resource, which defines which kind of data is available from the con-
nected source;

− source_modelling, which describes how the information is structured;
− dictionary, which provides the term correspondence between the mediator and

the source.

KnowledgeBase: {
name: Translation_Management_KB
 composed-of:

 source_resource(InfoType(+))
 source_modelling(SourceType,Relation(+),Attributes(+))
 dictionary(MediatorTerm,SourceType,Correspondence)

type: closed_world
 }

Fig. 7. Knowledge Base Descriptions

Capability. Capabilities formalize the behavioural elements of an agent. They are
composed of plans and events that together define the agent’s abilities. It can also be
composed of subcapabilities that can be combined to provide complex behaviour. As
shown in Fig. 5, the mediator specification presents five capabilities:

− Handle_Request decomposes a user query into one or more subqueries and
sends them to adequate wrappers;

− Handle_Results synthesizes the source answers and returns the answers to the
broker;

− Materialized_Views manages the storage, updates, queries and results related to
a set of materialized views;

− Wrapper_Localization manages the information (provided by the matchmaker)
concerning the localization of a source and its connected wrapper;

− Handle_Change executes the materialized view updates when a monitor detects
changes from its source.

Each capability is specified with a name and a body (composed-of) containing
the plans that the capability can execute and the events that it can post to itself (han-
dled by one of these plans) or send to other agents. For example, the Han-
dle_Request is specified as follows:

The DecompNmlRq and the DecompMCRq plans deal with the decomposition
of normal and multi-criteria (expressing the user preferences) requests.

158 S. Faulkner et al.

Capability: {
name: Handle_Request_CP
composed-of:
 Plan: DecompNmlRq

 Plan: DecompMCRq
 SendEvent: FaillUserRq
 SendEvent: FailDecompMCRq
 PostEvent: ReadyToHandleRst

availability: available
 }

Fig. 8. Capability Description

The DecompNmlRq plan, as illustrated in Fig. 9, is triggered each time a new
user_keyword belief is added to the Request KB. The argument values of the
user_keyword belief are required by the Ask(user_info-needs) service that the
mediator initiates. However, the plan is only executed if a materialized_view belief
which has the same argument values as the invocation user_keyword belief does not
exist. A materialized_view belief represents a repetitive user information need
whose content is extracted from each source, merged with relevant information from
other sources and stored as a belief by the mediator.

The complementary condition on the existence of a materialized_view belief is
specified by the context. The context helps for the selection of the most appropriate
plan in a given situation.

As soon as the invocation condition and the context are true, the sequence of
actions or services specified in the plan body is executed. The plan body of the
DecompNmlRq plan is composed by the sequence of an action and a service.
The mediator selects from their wrapper beliefs one or many wrappers (wp(+))
capable of translating the decomposed subqueries. Then, a translation service
(Ask(query_translation) is asked from the selected wrappers.

The plan will only succeed if the statement described by the endstate is success-
ful. Moreover, SKwyRL-ADL also allows specifying what happens when a plan
reaches its endstate or fails, by considering further courses of action or service. For
example, the succeed specification of the DecompNmlRq plan counts the number of
occurrences of the current subquery in order to identify a possible new materialized
view, while the fail specification returns to the execution of the DecompMCRq plan.

Configuration. To describe the complete topology of the system architecture, the
agents of an architectural description are combined into a SKwyRL configuration.

Instances of each agent or service that appear in the configuration must be identi-
fied with an explicit and unique name. Once the instances have been declared, a con-
figuration is completed by describing the collaborations. The collaborations define the
topology of the configuration by showing which agent participates in which interac-
tion. This is done by defining a one-to-many mapping between provided and required
service instances.Part of the GOSIS configuration with instance declarations and
collaborations is given in Fig. 10. “(min)...(max)” indicates the smallest acceptable
integer, as well as the largest one. An omitted cardinality (as is the case with (max) in
the broker, mediator and wrapper agents), means no limitation to dynamic and evolv-
ing structures which can change at runtime.

 A Formal Description Language for Multi-Agent Architectures 159

Plan: {
name: DecompNmlRq
invocation: Add(Request_KB, user_keyword(pt(+),kw(+))

/* with pt:ProductType From
 Mediator.Ask(user_info-needs).reply_with
/* with kw:Keyword From
 Mediator.Ask(user_info-needs).reply_with

context: ¬ materialized_view(ProductType = pt(+),Keyword = kw(+))
body: ∀ pt : ProducType ∈ user_keyword(pt(+),kw(+)) Do

Action: select_wrapper
 (wrapper (WrapLocalization,TranslationService(+))
as wp(+): Wrapper
Service:

performative: Ask(query_translation)
sender: Mediator
parameters: rt:RequestType ∧ pt:ProductType
 ∧ kw(+):Keyword
receiver: wp(+): Wrapper

Affect: Add(Translation_Management_KB, search(rt,pt,kw(+))
End-Do

endstate: ∀ pt : ProducType ∈ user_keyword(pt(+),kw(+)) Do
 Add(Translation_Management_KB, search(rt,pt,fk(+))
End-Do

suceed: Action: count(search(rt,pt,kw(+))
Affect: Add(Request_Kb, old_user_keyword(pt,kw(+))

failure: Plan: DecompMCRq
}

Fig. 9. A Plan Specification

Such a configuration allows for dynamic reconfiguration and architecture resolv-
ability at run-time. Configurations separate the description of composite structures
from the description of the elements that form those compositions. This permits rea-
soning about the composition as a whole and its reconfiguration without having to
examine each component.

5 Related Work

Over the past decade, the field of software architecture has received increasing atten-
tion as an important subfield of software engineering. Practitioners have come to
realize that getting an architecture “right” is a critical success factor for system design
and development. They have begun to recognize the value of making explicit archi-
tectural descriptions and choices in the development of new products. In this context,
a number of researches have proposed architectural description languages for repre-
senting and analysing architectural designs. An Architectural Description Language
(ADL) provides a concrete syntax for specifying architectural abstractions in a de-
scriptive notation. Architectural abstractions concern the structure of the system’s
components, their behaviour, and their interrelationships.

160 S. Faulkner et al.

Configuration GOSIS
Description
Agent Broker[nb: 1…] Agent Mediator[nm: 1…]
Agent Wrapper[nw: 1…nS]
 /*with nS = number of information sources
Agent Monitor[nmo: 1…nS] Agent Matchmaker
Agent Multi-Critria-analyzer
Service Tell(query_translation) Service Ask(query_translation)
Service Achieve(result) Service Do(result)
Service Tell(subscription_info) Service Ask(subscription_info)
…
Instance
BRnb: Broker MEnm: Mediator
WRnw: Wrapper MOnmo: Monitor
MA: Matchmaker MCA: Multi-Criteria-Analyzer
Tellquerytrans: Tell(query_translation)
Askquerytrans: Ask(query_translation)
Achres: Achieve(result) Dores: Do(result)
Tellsubs: Tell(subscription_info) Asksubs: Ask(subscription_info)
…
 Collaborations
MEnm.Askquerytrans --- Tellquerytrans.WRnw;
MEnm.Achres --- Tellres.WRnw; MEnm.Asksubs --- Tellsubs.MA;
…

End GOSIS

Fig. 10. Configuration Description

We have a number of ADLs that vary widely in terms of the abstractions they support
and analysis capabilities they provide. Bass et al. [4] defines the following set of require-
ments for a language to be an ADL. This section surveys the characteristics of ADLs in
terms of the classes of systems they support, the inherent properties of the language them-
selves, and the process and technology support they provide to represent, refine, analyze,
and build systems from an architecture. Some existing ADLs are described.

Recognizing that the Unified Modeling Language 2.0 (UML) supports software ar-
chitectural description [22, 28], C. Silva et al. [28] present an extension to the UML
metamodel to capture the features of agency to support MAS modeling at the archi-
tectural level. In doing so, they define a notation to model MAS architectures. Tropos
is a framework which offers an approach to guide the development of multi-agent
systems (MAS). It relies on the i* notation to describe both requirements and archi-
tectural design. However, the use of i* as an ADL is not suitable, since it presents
some limitations to capture all the information required for designing MAS architec-
tures. Furthermore, they provide a set of heuristics to describe MAS using a UML-
based notation derived from an architectural description using i*. They illustrate their
approach by modeling a Conference Management System.

Rapide is an event-based, concurrent, object-oriented language specifically de-
signed for prototyping system architectures [18]. Rapide allows architectural designs
to be simulated, and has tools for analyzing the results of those simulations. The pri-
mary design criteria for Rapide are (i) to provide architecture constraints that permit
system architectures to be expressed in an executable form for simulation before
implementation decision are made, (ii) to adopt an execution model that captures
distributed behaviour and timing as precisely as possible, (iii) to provide for-
mal constraints and mappings to support constraint-based definition of reference

 A Formal Description Language for Multi-Agent Architectures 161

architectures and testing of systems for conformance to architecture standards, and
(iv) to address some of the issues of scalability involved in modelling large system
architectures. Rapide consists of five sub-languages: (i) the type language describes
the interfaces of components, (ii) the architecture language describes the flow of
events between components, (iii) the specification language describes abstract con-
straints on the behaviour of components, (iv) the executable language specifies ex-
ecutable modules, and (v) the pattern language describes patterns of events.

Darwin [19] is a language for describing software structures that has been around,
in various syntactic guises, since 1991. Darwin encourages a component- or object-
based approach to program structuring in which the unit of structure (the component)
hides its behaviour behind a well-defined interface. Programs are constructed by cre-
ating instances of component types and binding their interfaces together. Darwin
considers such compositions also to be types and hence encourages hierarchical com-
position. The general form of a Darwin program is therefore a tree in which the root
and all intermediate nodes are composite components; the leaves are primitive com-
ponents encapsulating behavioural as opposed to structural aspects.

Wright supports the specification and analysis of interactions between architectural
components [2]. The primary purpose of Wright is to analyze the interconnection
behaviour. Wright uses a subset of CSP [15] to provide a formal basis for specifying
the behaviour of components and connectors, as well as the protocols supported by
their interface elements. In Wright, components are computation elements with
multiple ports. A port is a logical point of interaction between component and its
environment. A port defines the expectations of a component. The computation of a
component describes the relationship between ports.

ACME [12] is developed as a joint effort of the software architecture research
community as a common interchange format for architecture design tools. ACME
provides a structural framework for characterizing architectures, together with annota-
tion facilities for additional ADL-specific information. This scheme permits subsets
of ADL tools to share architectural information that is jointly understood, while toler-
ating the presence of information that falls outside their common vocabulary.

UniCon (language for UNIversal CONnector support) [33] is an architecture de-
scription language (ADL) that describes software architectures in general. UniCon is
organized around two symmetrical constructs: components and connectors. Compo-
nents represent loci of computation and data in a software system. They are used to
organize the computation and data into parts that have well-defined semantics and
behaviours. Connectors represent classes of interactions among the components. They
are used to mediate component interactions. Both components and connectors have a
specification part and an implementation part. With proper set of primitive compo-
nents, an architecture that is described in UniCon may be executable. UniCon sup-
ports external analysis tools. UniCon has a high-level compiler for architectural
designs that support a mixture of heterogeneous component and connector types.

6 Conclusion

Software engineering for new applications domains such as Interned-based services is
forced to create open architectures able to cope with distributed, heterogeneous and
dynamic information issues. The area of multi-agent systems (MAS) looks promising
for helping design such complex system. MASs provide an open and evolving

162 S. Faulkner et al.

architecture that can change at run-time to exploit the services of new agents, or re-
place existing ones.

Unfortunately, architectural design for MAS has not received sufficient attention.
More specifically, very few efforts have been made to define architectural description
languages (ADL). This paper has defined a set of system architectural concepts to
propose such a language for BDI-MAS. This ADL allows the specification of each
agent component (in terms of knowledge base, interface and capabilities), agent be-
haviour (in terms of belief, goal and plan) and agent interactions (in terms of service
and configuration).

The research reported here calls for further work. We are currently working on:

- the development of a CASE tool to automatically generate code for the fu-
ture multi-agent system from SKwyRL-ADL specifications;

- the definition of a set of rules to perform consistency analysis to be included
in verification tools such as PVS;

- the identification of a suitable set of core abstractions, inspired by organiza-
tional metaphors, to be used during the design of the multi-agent system ar-
chitecture.

References

1. Allen, R., Garlan, D.: Formal Connectors. Software Architecture Lab., Carnegie Mellon
University, Pittsburgh, USA, Technical Report CMU-CS-94-115 (1994)

2. Allen, R., Garlan, D.: Beyond Definition/Use: Architectural Interconnection. In: Proceed-
ings of ACM Workshop on Interface Definition Languages, Portland, Oregon, pp. 35–45
(January 1994)

3. Austin, J.L.: How to do things with worlds. Oxford University Press, New York (1962)
4. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley,

Reading (1998)
5. Bratman, M.: Intentions, Plans and Practical Reasoning, Harvard Univ (1988)
6. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern Oriented Soft-

ware Architecture: A System of Pattern. Wiley and Sons, Chichester (1996)
7. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information systems

engineering: The Tropos Project. Information Systems 27(6), 365–389 (2002)
8. Coglianese, L.H., Szymanski, R.: DSSA ADAGE: An Environment for Architecture Based

Avionics Development. In: AGARD 1993. Proc. Of the 4th Int. Conf. on: Aerospace Soft-
ware Engineering for Advanced Systems Architecture, Paris, France, pp. 321–328 (1993)

9. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-Directed Requirements Acquisition.
Science of Computer Programming 20(1), 3–50 (1993)

10. Formo, D., Mendenlo, U.: A Multi-Agent Simulation Platform for Modeling Perfectly Ra-
tional and Bounded-Rational Agents in Organizations. Artificial Societies and Social
Simulation 5(2), 166–177 (2001)

11. Faulkner, S.: An Architectural Framework for Describing BDI Multi-Agent Information
Systems, Ph.D. thesis, Department of Management Science, University of Louvain, Bel-
gium (May 2004)

12. Garlan, D., Monroe, R.: Acme: an architecture description interchange language. In: Proc. of the
7th Annual IBM Centre for Advanced Studies Conference, Toronto, Ontario, pp. 78–86 (1997)

13. Garlan, D., Shaw, M.: An Introduction to software architecture. In: Ambriola, V., Tortora,
G. (eds.) Advances in Software Engineering and Knowledge Engineering, pp. 1–39. World
Scientific Publishing, Singapore (1993)

 A Formal Description Language for Multi-Agent Architectures 163

14. Garlan, D., Allen, R., Ockerbloom, J.: Exploiting Style in Architectural Design Environ-
ment. In: SIGSOFT 1994. Proc. Of the 2th Int. Conf. on ACM Symposium on the Founda-
tion of Software Engineering, New Orleans, Louisiana, pp. 175–188 (1994)

15. Hoare, A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1995)
16. Kolp, M., Wautelet, Y.: DesCARTES Architect: Design CASE Tool for Agent-Oriented

Repositories, Techniques, Environments and Systems. In: Louvain School of Management,
Université catholique de Louvain, Louvain-la-Neuve, Belgium (2007), http://www.sys.
cl.ac.be/descartes

17. Luck, M., d’Inverno, M.: A formal framework for agency and autonomy. In: Proc. of the
1st Int. Conf. on Multi-Agent Systems, San Francisco, USA, pp. 254–260 (1995)

18. Luckham, C., Kenney, J.J., Augustin, L.M., Vera, J., Bryan, D., Mann, W.: Specification
and Analysis of System Architecture Using Rapide. IEEE Transactions on Software Engi-
neering 21(4), 336–355 (1995)

19. Magee, J., Dulay, N., Eisenbach, S., Kramer, J.: Specifying Distributed Software Architec-
tures. In: Botella, P., Schäfer, W. (eds.) ESEC 1995. LNCS, vol. 989, pp. 137–153.
Springer, Heidelberg (1995)

20. Magee, J., Kramer, J.: Dynamic Structure in Software Architectures. In: Proc. of the 4th Int.
Conf. on the Foundations of Software Engineering, San Francisco, CA, USA, pp. 3–14 (1996)

21. Mettala, I., Graham, M.H.: The domain-specific software architecture program. Technical
Report CMU/SEI-92-SR-9. Carnegie Mellon Univ (1992)

22. Mylopoulos, J., Kolp, M., Castro, J.: UML for Agent-Oriented Software Development:
the Tropos Proposal. In: Gogolla, M., Kobryn, C. (eds.) Unified Modeling Language
(UML). LNCS, vol. 2185, pp. 422–441. Springer, Heidelberg (2001)

23. Object Management Group, The Software Process Engineering Metamodel Specification.
Version 1.1 (2007)

24. Owre, S., Rajan, S., Rushby, J.M., Shankar, N., Srivas, M.: PVS: Combining Specifica-
tion Proof Checking and Model Checking. In: Alur, R., Henzinger, T.A. (eds.) CAV
1996. LNCS, vol. 1102, Springer, Heidelberg (1996)

25. Perry, D.E., Wolf, A.L.: Foundations for study of software architecture. In ACM
SIGSOFT Software Engineering Notes 17(4), 40–52 (1992)

26. Shaw, M., DeLine, R., Klein, D.V., Ross, T.L., Young, D.M., Zelesnik, G.: Abstractions
for Software Architecture and Tools to Support Them. IEEE Transactions on Software En-
gineering 21(4), 314–335 (1995)

27. Shaw, M., Garlan, D.: Software Architecture: Perspectives on an Emerging Discipline.
Prentice Hall, Englewood Cliffs (1996)

28. Silva, C., Araújo, J., Moreira, A., Castro, J., Alencar, F., Ramos, R.: Modeling Multi-
Agent Systems using UML. In: Proc. of the 20th Brazilian Symposium on Software Engi-
neering (SBES), Florianópolis, Brazil (October 2006)

29. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice-Hall, Englewood Cliffs (1992)
30. Wautelet, Y., Kolp, M., Achbany, A.: I-Tropos, An Iterative SPEM-Centric Software Pro-

ject Management Process, Working Paper IAG Series 13/06, Louvain School of Manage-
ment, ULouvain, Belgium (2006)

31. Wooldridge, M., Jennings, N.R.: Special Issue on Intelligent Agents and Multi-Agent Sys-
tems. Applied Artificial Int. Journal 9(4), 74–86 (1996)

32. Yu, E.: Modeling Strategic Relationships for Process Reengineering, Ph.D. thesis, Dpt. of
Computer Science, University of Toronto, Canada (1995)

33. Zelesnik, Y.: The UniCon Language Reference Manual, May (1996), http://www.cs. cmu.edu/
UniCon/reference-manual/ Reference Manual 1.html

Comparing Three Formal Analysis Approaches

of the Tropos Family

Dominik Schmitz1, Gerhard Lakemeyer2, and Matthias Jarke1,2

1 Fraunhofer FIT, Schloss Birlinghoven, 53754 Sankt Augustin, Germany
dominik.schmitz@fit.fraunhofer.de

2 RWTH Aachen University, Informatik 5, Ahornstr. 55, 52056 Aachen, Germany
{lakemeyer,jarke}@cs.rwth-aachen.de

Abstract. Tropos is a software development methodology founded on
concepts used to model early requirements, the i* framework. In ad-
dition to a methodological framework, research addresses also formal
analysis support. In previous work, we proposed the prototype environ-
ment SNet based on the Trust-Confidence-Distrust (TCD) approach for
the representation and dynamic evaluation of agent-based designs for
inter-organizational networks. There are two major ingredients: i* for
modeling the domain statically and ConGolog for analysing it dynami-
cally via simulations. In this paper, we compare our approach with two
other approaches that enrich i*/Tropos models to allow for more formal
analyses, Formal Tropos and Secure Tropos. While the intended use of
these is quite different from SNet, there are a number of commonali-
ties, which will be highlighted as well as the differences that suggest a
combined use, including complementary forms of analysis such as model
checking versus simulation.

1 Introduction

Tropos [3] is an agent- and goal-oriented software development methodology. As
opposed to methodologies that have been inspired by programming constructs
(e. g. structured or object-oriented methodologies), Tropos is founded on con-
cepts used to model early requirements. Consequently, a key feature of Tropos is
to include the organizational environment of the system to be developed in the
modeling. Thus, the i* organizational modeling framework [27] is at the center
of this methodology.

In previous work, we proposed to apply Tropos also to support requirements
engineering for strategic inter-organizational networks, which are comprised of
human, organizational, and technological actors. The prototype environment
SNet is the result of this research [10]. A crucial aspect of these networks are the
interdependencies among the various actors, which result, for example, from the
need to delegate certain activities, which in turn requires a certain level of trust
between the (human) members of the network. The agent-based graphical mod-
eling language i* has proven to be particularly suitable as a modeling means in
this context because it explicitly deals with dependency relations, besides other

M. Kolp et al. (Eds.): AOIS 2006, LNAI 4898, pp. 164–182, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Comparing Three Formal Analysis Approaches of the Tropos Family 165

notions like actors, goals, resources, and tasks. To capture the dynamic aspects
of agent networks, we [10] as well as Wang and Lespérance [25] independently
proposed to amalgamate i* and the action formalism ConGolog [7]. To bridge
the gap between the two formalisms we extended i* by features to describe task
preconditions and effects. These extended i* diagrams are automatically trans-
lated into executable ConGolog programs, supported by the metadata manager
ConceptBase [17]. With the help of simulations, the modeler can then evalu-
ate different complex scenarios especially with regard to how trust relationships
evolve, how to ensure that the network maintains its flexibility and innovative
culture, or to decide how a particular network member should behave in some
situation. This provides the foundation of a decision support tool to manage
inter-organizational networks.

There exist several other approaches that try to enrich i*/Tropos in order to
allow for more formal analyses. In this paper, we compare our approach with two
of them. Formal Tropos (hereafter FT) [8] is intended to support the elicitation
of early requirements by enriching the i* specification with additional constraints
in linear time logic [21], e. g. on how to create or fulfill goals. On this elaborated
specification and with the help of an intermediate language, model-checking
techniques can be applied using NuSMV [5] a state-of-the-art model checker
that they adapted to their needs. Thus, FT’s main purpose is to check for the
consistency of a specification.

Secure Tropos (hereafter ST) [15] is a derivative of Tropos and results from
the observation that current approaches dealing with security requirements do
not consider them as first class citizens. Giorgini et al. argue that security is
not a technical problem alone but should be considered at the organizational
level as well. In contrast to FT, ST’s enrichments of i* focus on the modeling
level only, especially on the refinement of dependencies. No additional extension
concerning dynamics is added. Formal analysis is provided by a transformation
to either a Datalog representation or to FT. Recently, support for the automatic
generation and exploration of design alternatives was added [1].

There is a major basic difference between our approach and these two. While
they are intended for agent-based requirements engineering preceding some kind
of (security-aware) software development, our target is decision support for real-
world inter-organizational networks (with a special focus on trust). Thus, differ-
ences are to be expected. Nevertheless, since we use a common starting point,
it seems to be worth to analyse the similarities and differences in detail in order
to identify potential opportunities of a combined use.

The paper is organized as follows. In Sect. 2, we shortly introduce the basics
of SNet, i. e. our extended i* and the mapping to ConGolog. The example is
adapted from [8] and thereby prepares already the detailed comparison with
Formal Tropos that follows in Sect. 3. An example from the same domain is
considered for the comparison with Secure Tropos that is presented in Sect. 4. In
Sect. 5 we discuss ideas of a combined use in both domains, software requirements
engineering as well as decision support for inter-organizational networks. We end
with a short conclusion and an outlook on future work (Sect. 6).

166 D. Schmitz, G. Lakemeyer, and M. Jarke

2 SNet: A Combination of i* and ConGolog

We base our modeling and simulation environment SNet for inter-organizational
networks on a combination of two formalisms: i* – a graphical modeling language
originally intended for describing early requirements – for statically modeling the
network and ConGolog – a logic-based high-level programming language – for
simulations so that dynamic aspects such as trust can be analyzed. We take
an agent-oriented view in that each actor of an inter-organizational network is
represented by a deliberative agent and provide an automated transformation of
the i* model to ConGolog code.

2.1 An Extended Version of i*

The i* framework [27] is a graphical language and includes the strategic depen-
dency (SD) model for describing the network of relationships among actors (re-
fined into agents, roles, and positions) and the strategic rationale (SR) model,
which, roughly, describes the internal structure of an actor in terms of tasks,
goals, resources, and softgoals. Compared to Yu’s original formulation we added
a few new features to SR models such as preconditions and effects to tasks and
goals, represented by an additional element and by sequence links. Resources are
interpreted in a similar fashion as effects of task/goals that provide them and
as preconditions to task/goals that want to consume them. Softgoals are used
just as in the original i* to characterize other intentional elements like goals and
tasks and they are given a quantitative interpretation. For details, see [11].

Fig. 1. SNet SR model for teacher-student management

Figure 1 shows a partial SR model of the course management example at
a university adapted from [8]. A “Teacher” teaches a course and provides a
corresponding exam, while a “Student” attends the course and aims at passing
it. While our TCD approach as a whole makes use of i*’s strategic dependency

Comparing Three Formal Analysis Approaches of the Tropos Family 167

model, the SNet tool currently can only cope with implicit dependencies resulting
from the delegation of intentional elements. Since it is common practice in the
combined use of SR and SD diagrams (and thus also here) to attach dependency
relations to some internal activity of an agent, we have rewritten the example
in [8]. Task or goal dependencies have become delegations, i. e. they interconnect
task or goal elements of different actors via decomposition or means-ends links
(see, for example, “Teach Course” of the “Teacher” and “Attend Course” of
the “Student”). During simulations, a simple bidding protocol and the planning
component figure out the details of a concrete delegation. Resources are used
as constraints on the execution order of connected task/goal elements. Figure 1
shows the same resources as their picture in [8] except for using dependency
links (and we had to adapt the sources/destinations to the simplified setting).
Due to its origin, this example is not perfectly suited to present SNet’s features,
but well suited for the comparison with Formal Tropos in Sect. 3.

2.2 Mapping the i* Model to a ConGolog Program

ConGolog [7] is based on the situation calculus, an increasingly popular language
for representing and reasoning about the preconditions and effects of actions [20].
It is a variant of first-order logic, enriched with special function and predicate
symbols to describe and reason about dynamic domains. Relations and functions
whose values vary from situation to situation are called fluents, and are denoted
by predicate symbols taking a situation term as their last argument. There is
also a special predicate Poss(a, s) used to state that action a is executable in
situation s.

ConGolog is a language for specifying complex actions (high-level plans).
For this purpose, constructs like sequence, procedure, if-then-else, but also non-
deterministic (e. g. ndet) and concurrency (e. g. conc) constructs are provided.
Table 1 gives an overview of the available constructs. ConGolog comes equipped
with an interpreter which maps these plans into sequences of atomic actions
assuming a description of the initial state of the world, action precondition ax-
ioms (poss), and effect axioms where the latter describe the effects of actions on
fluents. For details see [7].

The automated mapping of the i* elements results in a possibly non-deter-
ministic ConGolog program. A complex task is transformed into a procedure
whereby the body is derived from the sub-elements. The sequential relations
between the sub-elements are reflected via the use of sequence and conc. Figure 2
shows the resulting procedure for “Give Exam” with the concurrent calls for
“Run Exam” and “Marking Exam”. proc introduces the definition of a procedure.
Its body starts with the sequence construct ([...]). There are primitive actions
preceding and following the body, so that the preconditions to and effects of this
element can be reflected in the program.

Figure 3 shows the poss axioms of the finishing action of “Give Exam” and
of the starting and finishing actions of “Marking Exam”. The poss axiom of a
starting action collects all incoming sequence links as well as links from resource
and precondition/effect elements. Resources are treated as special preconditions

168 D. Schmitz, G. Lakemeyer, and M. Jarke

Table 1. Overview of available ConGolog constructs

α primitive action
φ? test action
[σ1, σ2, . . . , σn] sequence
if φ then σ1 else σ2 conditional
while φ do σ loop
ndet(σ1, σ2) nondeterministic choice of actions
pi(x, σ) nondeterministic choice of arguments
star(σ) nondeterministic iteration
conc(σ1, σ2) concurrent execution
pconc(σ1, σ2) prioritized concurrent execution
interrupt(φ, σ) triggers σ whenever φ holds

proc(β(
→
x), σ) procedure definition

proc(give_Exam(Agent, teacher, PID, T, Course),
[give_Exam(pre, Agent, teacher, PID, _, Course),
conc(run_Exam(Agent, teacher, PID, _, Course),

marking_Exam(Agent, teacher, PID, _, Course)),
give_Exam(post, Agent, teacher, PID, _, Course)])).

Fig. 2. Fragment of ConGolog code resulting from transformation of “Give Exam”

in that the current owner is checked. Accordingly they have to be mapped to flu-
ents to capture that the owner might change over time. The precondition/effect
element finally provides means to define arbitrary additional conditions referring
to any fluent that exists in the system (e. g. fluents related to trust) via a formula
attribute (not needed here). Similarly, its fluent and function attributes are used
to describe arbitrary effects of the connected task/goal element associated with
its finishing primitive action. For resources, an effect axiom sets the new owner.

poss(give_Exam(post, Agent, teacher, PID, T, Course),
and(executed(run_Exam(post, Agent, teacher, PID, _, Course)),

executed(marking_Exam(post, Agent, teacher, PID, _, Course))))
poss(marking_Exam(pre, Agent, teacher, PID, T, Course),

owner(answer(PID, Course)) = Agent)
poss(marking_Exam(post, Agent, PID, T, Course),

and(executed(marking_Exam(pre, Agent, PID, T0, Course)),
time = T0 + dur))

Fig. 3. Examples for poss axioms in SNet

To clarify the relationship between (i*) tasks and (ConGolog) primitive ac-
tions, it is worth to mention that we map even primitive tasks, i. e. tasks that
are not decomposed any further such as “Marking Exam”, to a procedure.
In this case, the body consists only of the starting primitive action and the

Comparing Three Formal Analysis Approaches of the Tropos Family 169

finishing primitive action, following Reiter’s suggestion [22] to model activities
with a duration via processes with instantaneous starting and finishing actions.

In i*, goals can be viewed in two ways. One view is forward-directed, with
goals representing the post-conditions of the tasks that fulfill them. The other
is backward-directed or intentional, that is, starting from a goal, one asks what
would be the best way of achieving this goal, given a number of possible alter-
natives. The original i* framework did not commit to a reading direction. But
in order to make the model description executable and to resolve ambiguities,
we commit to the second, goal-driven reading direction. Thus, goals and their
fulfilling tasks are also mapped onto procedures but the different alternatives
for achieving the goal are combined using the nondeterministic choice operator
ndet so that the agents can deliberate about this decision at run-time using the
decision-theoretic planning component introduced in [11]. It allows for reason-
ing about the different alternatives not only according to their contributions to
the criteria specified via softgoals but also according to the evolution of trust
relationships and/or gain. To be able to collect the various contributions (over
time), softgoals are represented by fluents.

proc(pass_Course(Agent, student, PID, T, Course),
[pass_Course(pre, Agent, student, PID, _, Course),
pass_Exam(Agent, student, PID, _, Course),
pass_Course(post, Agent, student, PID, _, Course)])).

Fig. 4. Fragment of ConGolog code resulting from transformation of “Pass Course”

Figure 4 shows an excerpt of the transformation into ConGolog of the goal
“Pass Course” from Fig. 1. Since there is only one alternative to achieve this
goal, the ndet that would enclose the call to “Pass Exam” has been omitted.

2.3 The SNet Environment

The current SNet environment supports the modeling of generic relationships
within inter-organizational networks. The user can establish a concrete scenario
by specifying agents that play the generic roles. This instantiation includes in-
formation such as the agent-specific durations of primitive tasks and numerical
contributions to softgoals. Other details concern intial trust values the agents ex-
hibit to each other, experiences, gain, and general characteristics concerning risk
attitude and trust orientation. All the information is compiled as described above
via ConceptBase to ConGolog code that can be executed within the simulation
environment. The simulation environment does not only provide the decision-
theoretic planning component to reason about which alternative to choose at
run-time, but also the communication facilities to implement a delegation proto-
col and the possibility to initiate proactivities of agents via so called exogenous
actions. The latter are the means for influencing a concrete simulation run. The
user creates a particular setting by initiating different agents’ activities, thereby
possibly generating competing requests and thus conflicts, that can be analysed

170 D. Schmitz, G. Lakemeyer, and M. Jarke

especially with regard to how trust is involved and effects the outcome. Conclu-
sions derived by the user might lead to modifications of the model or of scenario
conditions which provide the basis for new simulation runs.

3 Comparison with Formal Tropos (FT)

The key idea of FT is to enrich the i* specification of early requirements with
additional constraints in linear time logic. These details enable formal analyses,
especially of dynamic issues. For example, it can be checked whether regarding
some particular setting, a goal is fulfillable (in the future). The main aim of these
analyses is to ensure the consistency of the specification. As mentioned, we base
our comparison with FT on the example in [8] that has already been introduced
in the previous section (see Fig. 1). Figure 5 shows a partial FT representation
of the example that can be derived from the graphical i*/Tropos representation
similarly to SNet automatically by applying some heuristics. The subsequent
comparison is separated into a comparison concerning the modeling means dis-
tinguishing static and dynamic aspects and concerning the analysis/simulation.
Table 2 gives an overview of the results.

Entity Course
Entity Exam

Attribute constant c:Course
Actor Student
Goal PassCourse

Mode achieve
Actor Student
Attribute constant co:Course
Fulfillment definition
∀ e:Exam (e.c=co → ∃p:PassExam
(p.ex=e ∧ p.pc=self ∧ Fulfilled(p)))

Task PassExam
Mode achieve
Actor Student
Attribute constant pc:PassCourse

constant ex:Exam
Creation condition ¬ Fulfilled(pc)
Invariant pc.actor=actor ∧ pc.co=e.c

Actor Teacher
Task GiveExam

Mode achieve
Actor Teacher
Attribute constant exam:Exam

Resource Dependency Answer
Mode achieve
Depender Teacher
Dependee Student
Attribute constant exam:Exam

Resource Dependency Mark
Mode achieve
Depender Student
Dependee Teacher
Attribute constant ex:Exam

passed:boolean
Invariant
Fulfilled(self)→

(passed↔ Xpassed)

Fig. 5. Partial FT model of the course management example (taken from [8])

3.1 Similarities and Differences Concerning Static Modeling

FT distinguishes an outer layer and an inner layer. The outer layer resembles
a class declaration and defines the structure of instances together with their
attributes. The inner layer on the other hand concerns constraints on the lifetime

Comparing Three Formal Analysis Approaches of the Tropos Family 171

Table 2. Concepts in FT vs. SNet

Formal Tropos SNet
static dependencies [only implicitly]

modeling cardinality constraints [only some]
attributes, entities parameters, precondition/effect

mode utility computation, planning
[not considered] agent, role, position

dynamic prior-to links sequence links
modeling creation/fullfilment poss of starting/finishing prim. actions

invariant procedural scope, fluents
temporal operators [restricted, less expressive]

trigger, condition, definition definition only

analysis debugging via model-checking experiments via simulations
finite domain no restrictions

of objects in the linear-time temporal logic mentioned before. Finally, global
properties on the whole domain complete a FT specification.

But before we consider the details of FT’s textual representation, we have a
short look at the extensions and differences at the graphical modeling level. FT
introduces cardinality constraints to define the number of instances of an element
that can exist in a system. SNet does not consider such constraints on links yet,
but assumes a 1-to-1 relationship concerning execution. But similarly to Wang
and Lespérance [25], we also discussed to allow for annotating that a subtask
or -goal can be iterated several times, but this is not yet fully integrated [18].
Furthermore concerning delegations, connections between roles already now im-
plicitly describe a 1-to-many relationship in the sense that each agent playing
the source role can choose one of the agents playing the destination role at run-
time. The absence of the distinction between the actor subtypes role, position,
and agent in FT seems less important.

The main differences on FT’s outer layer (structure of the elements in the
domain) result from the addition of entities and attributes. One main purpose of
these is to set up the context of elements, for example, that in Fig. 5 the same
“Course” is referenced by “Pass Course” and “Pass Exam”. Our transformation
into ConGolog programs ensures that a subtask or goal can only be considered
from within the super task or goal, i. e. the super task or goal sets the scope (or
context) for the subtasks/-goals. For example, the only call to “Pass Exam” is
made from the body of the procedure resulting from “Pass Course” (see Fig. 4).
In addition, similar to attributes in FT, SNet allows the user to specify arbitrary
parameters of task and goal elements and they are passed through within such
procedures. A default parameter is “PID” which separates different calls to the
same task/goal within one simulation. We can also use a parameter “Course”
to allow for different courses without the need to model each course separately.
And finally, we can specify with the help of precondition/effect elements arbi-
trary fluents that can be referred to from within preconditions and effects of
completely different modeling elements. Thus altogether, we have similar con-
structs available, except for the strong typing and additional facets FT provides.

172 D. Schmitz, G. Lakemeyer, and M. Jarke

In the outer layer FT introduces also a distinction between different modes
of intentional elements, i. e. achieve, maintain, the combination of the two, and
avoid. In SNet a goal has always to be achieved, a task completed, a resource
provided, and softgoals are supposed to be fulfilled as much as possible. Addi-
tionally, the latter ones are used in order to capture how well a goal was achieved
or a task was completed via a utility computation. In SNet this becomes much
more important since a goal or task can be instantiated (and thus also achieved)
several times within one simulation. For example, a “Student” can take sev-
eral courses with the same or other “Teachers”. Thus implicitly, task and goal
elements in SNet have a mode between achieve (once) and maintain.

Furthermore with the help of precondition/effect elements and fluents, we
can describe objects that exist longer than one instantiation. Especially our
representation of trust is also realized that way. Since the agents in SNet have the
implicit goal of achieving high utilities, maintain good trust relationships and/or
earn much gain, these measures thus affect each of the instantiations differently.
This is dealt with by our deliberative planning component at simulation run-
time. And since the activity of an agent is triggered externally (either by a user
interaction or a resulting delegation from another agent), it is not up to the
agent to avoid behavior (except for paths of behavior with low utility or gain).

3.2 Similarities and Differences Concerning Modeling Dynamics

A graphical modeling extension that affects FT’s inner layer are prior-to links.
They allow to capture the temporal order of intentional elements and have the
same meaning as our sequence links, except that FT allows them between a
larger set of intentional elements.

The inner layer expresses detailed constraints on the dynamics of objects in
LTL. FT distinguishes three modalities. A formula is a constraint if it is respected
while building-up the model-checking automaton (thus, ensured!). If a formula
describes only a desired behavior, assertion declares that the formula should
hold for all valid scenarios, whereas possibility denotes that one valid scenario
suffices. Such formulas can be assigned globally to the system as a whole or to
individual (intentional) elements as conditions on creation (supposed to hold at
the time of creation), invariant (throughout the lifetime of all class instances),
and fulfillment (whenever a goal/softgoal is achieved, a task completed, or a
resource made available). An additional modifier describes whether the stated
condition is sufficient (trigger), necessary (condition), or both (definition).

Many formulas associated with individual elements follow immediately from
the i*/Tropos graphical model. For example, the fulfillment condition of “Pass
Course” enforces that “Pass Exam” is completed. Similarly, the creation con-
dition for “Pass Exam” explicitly refers to the (non-fulfillment of the) super
element. Invariants mostly ensure that some referred objects/instances within
an element fit together (e. g. belong to the same course or student). Both FT and
SNet are capable of encoding this kind of constraints automatically during trans-
formation. SNet reflects such conditions via poss (precondition) and effect ax-
ioms of primitive starting and finishing actions resulting from the transformation

Comparing Three Formal Analysis Approaches of the Tropos Family 173

of tasks and goals (see pass Course(pre, ...) and pass Course(post, ...)
in Fig. 4). These conditions are necessary and sufficient. Consequently, the poss
axiom of a primitive starting action relates to FT’s creation constraint whereas
the precondition of the finishing action relates to the fulfillment constraint. In-
variants are not considered in SNet. In return, FT does not provide means to
explicitly specify what changes are caused by a modeling element (see SNet’s
effect axioms).

Similarly to FT, conditions are evaluated according to the current simulation
situation (state in FT). But SNet does not allow for referring to the future or
the past explicitly as it is possible in FT via the corresponding LTL operators.
In SNet, this is possible only indirectly via fluents. For example, the duration
dur of a primitive task is respected in SNet by mapping it to the poss ax-
iom of the corresponding finishing action of this task (see Fig. 3). The fluent
executed(marking Exam(pre,...)) (true if the action has already been exe-
cuted, false otherwise) provides the means to determine the time T0 at which
the corresponding starting action was executed. If T0 increased by the specified
duration equals to the current time (again a fluent!) the finishing action has
to be executed. If the condition of a poss axiom does not evaluate to true, the
corresponding primitive action is not possible in the current situation. It will
be re-checked again at a later date. Thus, while the operators of LTL in FT
provide much more general means to cope with past and future states, SNet is
also capable of coping with conditions that were true some time in the past or
will be true some time in the future.

3.3 Similarities and Differences Concerning Analysis

While FT and SNet both use constraints to restrict the resulting model that is
analysed (simulated) afterwards, FT’s (mostly global) assertion and possibility
modalities describe already parts of the analysis. This brings us also to the point
that we need to consider the differences concerning the different aims of the two
formalisms. FT aims at elaborating and completing a requirements specification.
For this purpose, FT and the corresponding T-Tool provide means for checking
consistency as well as testing the above mentioned assertions and possibilities.
In their example, they identified, for example, the need to ensure that a “Mark”
does not change its value once produced. Thus, the major focus is on detecting
bugs and missing details in the specification and iterating this process until the
specification seems to be complete.

SNet expects its model to be correct and functioning. Its main purpose is
not to help the user arrive at a correct representation, although it might be the
case that a modeler runs several simulations and makes updates to the model
until the simulation adheres to what is happening in the real world. Instead,
once such a calibrated model exists, the main purpose of SNet is to enable the
user to play around with it: What happens, when I change this modeling aspect
(e. g. a network rule)? How does this affect the network as a whole, each agent
individually, or the trust relationships between agents? Or what happens if my
view on a trust relationship is incorrect? What damages can I incur? The modeler

174 D. Schmitz, G. Lakemeyer, and M. Jarke

tries out different alternatives that are too costly to experiment with in the real
world. Thus, similar to FT we aim at an explorative analysis of the network.

A key difference that results from SNet’s strong connection to the real world
is that we need to be able to cope with much more instances than FT can cope
with (due to its reliance on finite model-checking). Consider, for example, the
unlimited number of instances of tasks and goals that can occur within one sim-
ulation (distinguished by the parameter “PID”). This is possible due to the fact
that SNet relies on simulations backed up by progression, thus after proceeding
the simulation we can throw away the history about what has happened before
as long as the effects of it are captured. For analysis purpose it is of course
possible to store the whole trace of a simulation (from which all intermediate re-
sults can be recovered). On the other hand, this approach allows only statements
about the single setting that has been investigated and not about a variety of
situations as it is possible with a model-checking based approach.

Furthermore, FT does not have an explicit notion of actions with pre- and
postconditions. Hence FT does not support deliberation about different courses
of actions, which is an essential feature of SNet. It allows the agents to decide
on their internal goals (i. e. choice points) on their own but according to rules
that reflect the real world (utility-based).

4 Comparison with Secure Tropos (ST)

For the comparison with ST, we stick to the university domain by using the
example from [15]. It concerns information access in a setting that includes an
administrative officer (Alice), a student IT system (Sam), and a student (Bob),
see Fig. 6. Since ST does not have a particular dynamic view, we focus for the
comparison on static modeling and analysis only (see overview in Table 3).

Fig. 6. ST model of university setting (based on [15])

4.1 Similarities and Differences Concerning Modeling

ST’s main idea is to replace i*’s dependency model by a more fine-grained model.
Similar to SNet, ST considers trust explicitly and thus separates a dependency
into a delegation and a trust relationship to enable delegations without trust. In
the example, Bob has to delegate to Sam the provisioning of his data although
he might not be confident that it will not be misused.

Comparing Three Formal Analysis Approaches of the Tropos Family 175

Table 3. Concepts in ST vs. SNet

Secure Tropos SNet
static delegation: perm vs. exec execution only

modeling trust: permission vs. execution trust
negative authorization [not considered]

[possible] quantitative trust
ownership vs. provisioning [no distinction]
social vs. individual trust confidence vs. individual trust

analysis detect static conflicts (Datalog) focus on dynamics, evolution of trust
exploring design alternatives decision-theoretic planning component

at modeling time at simulation run-time

Additionally, ST distinguishes between delegation of permission and delega-
tion of execution. The idea behind this is that, referring again to the example,
the relationship between Alice and Sam differs from the one of Bob and Sam.
While Alice relies on Sam for providing some service and Sam can at-least pro-
vide this service (execution), Bob relies on Sam for not misusing the provided
data (permission), i. e. that the data is at-most used in the intended way (formal
passage of authority). The flexible networks that SNet is concerned with avoid
formal procedures and rely on trust instead. Thus, SNet does not consider the
notion of permission. But in [16], Giorgini et al. explicitly mention that permis-
sion relates to resources whereas execution relates to tasks and goals. SNet also
treats these modeling elements differently in that only tasks and goals can be
delegated whereas resources are mapped to preconditions and effects.

Concerning trust, ST introduces also the difference between permission and
execution. Trust of execution denotes the belief that the trustee is capable of
providing the goal, task, etc. This corresponds to the notion of competence in
the nomenclature of Castelfranchi & Falcone [2]. SNet takes this part of trust for
granted since capabilities are modeled explicitly. Trust of permission reflects the
belief that the permission will not be misused, i. e. the trustee does not overstep
its authority. And similar to us, they also consider distrust separately, but only
to allow for modeling negative authorization. SNet’s understanding and use of
these concepts is a little bit different. While we consider trust as a combination
of Castelfranchi & Falcone’s senses of disposition, dependence, and fulfillment,
our distrust reflects the belief of misuse or opportunistic behavior. Negative
authorization does not occur in SNet. This difference results from the different
application domains. ST explicitly allows for specifying relationships that should
not occur. In SNet we have to deal with all the relationships that are present in
the real world and attribute always trust and distrust relationships to them. The
actual level of trust (distrust, respectively) is reflected by a quantitative value
that might evolve during simulation. Thus in addition, we do not have a binary
view on trust. While in [14] the authors state that taking into account several
degrees of trust would be easy, they do not present a quantitative model.

The use of the more detailed strategic rationale level in SNet makes the owner
of a task or goal explicit during modeling. Currently, we do not allow to pass on

176 D. Schmitz, G. Lakemeyer, and M. Jarke

such capabilities, thus, ownership and provisioning are coupled. But it occurs
often that subtasks or -goals are delegated further. Additionally, we are currently
considering agent evolution [12] which means that agents can acquire (or lose)
roles during simulation. This relates to the provisioning and passage of authority
and thus might enforce to incorporate these concepts in the future.

In [16], the authors distinguish also between social and individual levels. This
distinction is also present in SNet since modeling concerns only roles and posi-
tions, which are then instantiated (agents) separately. In contrast to ST, SNet
considers trust relationships on an individual level only. This results from the
emphasis on the dynamics of trust, i. e. how trust evolves during a simulation,
which ST does not consider at all. Consequently, in this regard the two ap-
proaches are not comparable. Furthermore, SNet supports the notion of confi-
dence that captures trust into the whole mesh of dependencies (the network),
whereas ST allows for checking a trust relationship on social level against the in-
dividual trust relationship on instantiated level. Altogether, these features seem
complementary.

In [15], Giorgini et al. refer to our work for introducing monitoring, which
they map on some pattern that can be applied at modeling time. Since they
have again only a static view, they do not consider the dynamics of monitoring:
What information can be monitored? How to evaluate monitoring results? How
to react to the results? Furthermore, they forward monitoring in case of sub-
delegations, i. e. if an actor that is monitored delegates a sub activity to a third
actor, this is transparent to the original delegator. We [12] explicitly avoid this
since it violates the autonomy of agents (network members, respectively). In
such a setting, the monitoring agent needs to know too many details about the
internals of the monitored agent.

4.2 Similarities and Differences Concerning Analysis

Concerning analysis, the ST-Tool provides means to create a Datalog representa-
tion as well as a FT representation. The latter seems to be an initial model that
can be extended with LTL formulas as described in the previous section. The
Datalog representation instead provides means to analyse specific ST issues such
as trust and distrust. For this purpose, the authors give an axiomatization of
intensional predicates. For example, they describe trust and distrust chains and
specify how monitoring can overcome problems resulting from distrust relation-
ships. Other axioms are used to establish the mapping from social to individual
level, or to describe whether some actor can satisfy some task, goal, etc. or has
the needed permissions. With the help of the ST-Tool, the modeler can then
check for the consistency of her model. Are the established trust, distrust, and
monitoring relationships sufficient to enable the execution of a service by some
particular role or agent? Are there any conflicts regarding trust on social level or
between social and individual level? SNet currently does not provide any means
to analyse trust relationships any further.

In recent work [1], an enrichment of the tool support for requirements engineer-
ing (and Secure Tropos in particular) is proposed that supports the automatic

Comparing Three Formal Analysis Approaches of the Tropos Family 177

generation and exploration of alternative options. Given a set of actors and goals
as the input, a planner generates design alternatives by generating alternative
multi-agent plans to fulfill all given goals. By using the “standard” planning lan-
guage PDDL [13], a suitable off-the-shelf planner can be used.

While both ST and SNet utilize planning approaches, the use is quite differ-
ent. ST uses the planner to generate and evaluate alternatives at modeling-time,
whereas the decision-theoretic planning component in SNet is used at simula-
tion run-time. Furthermore in ST, the designer is intended to remain in the
loop in that the suggestions that are generated by the planner need “to be re-
fined, amended, and approved” [1]. Also the solutions that are proposed by the
planner are not expected to be optimal. In contrast to this, the agents in SNet
are supposed to reflect real-world behavior without requiring user interaction in
regard to choosing from alternatives. Consequently, they also strive for an opti-
mal solution. The criteria according to which the optimum is searched combine
general aspects such as gain and trust considerations with domain-dependent
issues that are modeled with the help of softgoals relying on their quantitative
interpretation.

Due to the different purposes the planners serve in ST and SNet, also the
actions that are considered are different. In ST, generic domain-independent
actions concerning delegation, satisfaction, refinement as well as special actions
in regard to the absence of trust are defined. In SNet, the actions result from the
domain. Delegations are dealt with in that the delegator agent can choose from
all agents that play the role to which a task or goal is delegated as if they have
been defined as non-deterministic alternatives [12]. The actions that are proposed
in ST to cope with the absence of trust — negotiate, contract, delegate execution
under suspicion, fulfill, and evaluate – remind of the definition of speech acts [26].
In recent work [24], we proposed a transformation of individual speech act-based
business processes to i*’s strategic rationale level and thus we have similar actions
available.

Unsurprisingly, the main differences regarding analysis result from the fact,
that ST does not itself concern dynamic aspects. Neither the dynamics of dele-
gation nor of trust or monitoring are considered. For example, the chains of trust
are based on the specified trust relationships that are assumed to be fixed even
when the planner is applied. Thus, different trust settings have to be consid-
ered separately. Unfortunately, history knows several examples, e. g. equilibrium
analysis for a chemical plant, where such steady-state simulations showed beau-
tiful results but the desired steady state could never be reached. Therefore, SNet
takes the evolution of trust into account. Similarly, ST assumes that monitor-
ing ensures the fulfillment of a service, but that might not be true. Monitoring
is nonetheless useful because it allows to detect problems early and to initi-
ate appropriate counter measures. In regard to planning, ST might profit from
extending the set of actions to domain-dependent actions. Considerations on
how to integrate the ConGolog approach that is used in SNet and the planning
definition language PDDL are already on the way [6].

178 D. Schmitz, G. Lakemeyer, and M. Jarke

5 Ideas on a Combined Use

While a comparison with the two other formalisms is in itself already helpful,
a combined use of the three formalisms might be even more valuable. Thus, in
the following the potentials and limits of such a combined use are discussed in
regard to the two different application areas the formalisms originate in, software
requirements engineering and decision support for inter-organizational networks.

5.1 Application to Software Requirements Engineering

In an original FT setting, SNet’s simulations might be helpful simply due to the
possibility to cope with more instances. As it has been shown in [8], the model-
checker currently used puts severe restrictions on the number of instances per
class for the given example setting. While SNet due to its reliance on simula-
tions is not able to answer questions about fullfillment of assertions, possibilities
can easily be generated and tested without any restrictions on the number of
instances as we have experienced so far.

The Speech-Act perspective [26] of our multi-perspective modeling method-
ology, while not elaborated here, is intended to refine the plans that result from
strategic rational considerations in regard to strategic depencencies that are in-
volved. Speech-Acts are also used to analyse the interaction of business partners
in regard to completeness [23]. This fits nicely with FT’s view on completing a
specification and ST’s consideration of planning actions in the absence of trust.
Furthermore, the mapping from the speech act perspective onto the strategic
rationale perspective as described in [24] alleviates to apply FT analysis to such
models.

Applied to a requirements engineering setting, SNet’s simulations via Con-
Golog can be interpreted (or utilized) in the view of Christie [4]. He recommended
to make use of simulations more extensively during the whole software engineer-
ing process, also during requirements elicitation. In contrast to rapid prototyping
technologies, in SNet’s simulations the user does not interact directly with the
“system-to-be” but investigates the scenario from a third person’s view. Thus,
both — users and developers — can see how things are supposed to run once
the intended system is in place. This emphasises nicely the environment of the
intended system and thus picks up on the stress the original i*/Tropos approach
puts on modeling the environment. Such high-level simulations might provide a
suitable means to help predict how a new or altered system will change the en-
vironment especially the processes therein, thereby revealing misconfigurations
(also in regard to security) or opportunities for further improvements. The find-
ings can be fed back into the formal models, be analyzed with FT and ST means,
and provide a new starting point for another set of simulations.

Another nice feature of ConGolog that encourages this approach is the free
choice of granularity. As detailed out in Sect. 2.2, the simulations build on a
basic action theory that has to be specified by the modeler. While this might
seem tedious at a first glance (though automated support is provided), it now
is a major advantage. The modeler is free to decide about what is “primitive”

Comparing Three Formal Analysis Approaches of the Tropos Family 179

in her world. Consequently, she can always choose the most appropriate level of
granularity for the analysis and simulations. Thus, the preciseness of the simu-
lations follow strictly the refinements of the model. If a model is improved and
detailed out, renewed simulations might reveal different, new issues. This allows
to make use of ConGolog simulations not only in the requirements elicitation
phase but also at the design and detailed design phases.

An example where such a high-level simulation could be helpful concerns the
other major point of SNet, the consideration of the dynamics of trust (see ST
discussion in Sect. 4.2). SNet could be used to project how the “system-to-be”
can earn the trust of its users. This can lead, for example, to a gradual realization
of a system leaving the users enough time to gain confidence into it.

5.2 Application to Support Inter-organizational Networks

In Sect. 3.3, the difference between FT and SNet regarding the aim of the analysis
was clarified. While FT tries to analyse the specification in regard to complete-
ness and inconsistency, SNet takes these things for granted. Consequently, the
most obvious combination is to support the capturing and construction of SNet
models and their instantiation. Next to time-independent consistency issues (e. g.
unique names, goal and task decomposition analysis), FT allows to address time-
dependent issues that have to be respected in all simulations. For example, the
specified preconditions can partly be checked for whether at least one possi-
ble trace of execution exists (possibility). Furthermore, the maximum/minimum
duration of complex tasks can be computed to estimate the complexity and
duration of batch simulations.

Another application area of such kind of pre-analysis concerns the evaluation
of sets of network rules [24]. Network rules are defined on an organisational
level (e. g. a delegation protocol or the admittance procedure for entering a
network) and are intended to support the growth of trust relationships. On the
other hand, too many network rules let the network degenerate to a normal
organization [9]. Thus, a suitable set of network rules needs to be chosen. While
many simulations are needed to evaluate such sets, a dynamic FT analysis of their
technical interaction could avoid wasteful and costly constructed simulations
that fail simply due to design errors. Especially, since we support to model such
network rules separately, interference problems are likely to occur.

Regarding the combination with ST, up to now there is no support for further
analysis of the outcomes of simulations. The user has to interpret the outcome by
comparing trust values and by interpreting the events in the simulation (such as
re-delegations due to conflicts) manually. Thus, high-level analyses means are the
next step in the development of the SNet tool. Again this can be a field where an
integration of the two other formal approaches could help. The examples below
illustrate this.

– ST can be used to analyse and compare the initial, any intermediate, or the
final situation in regard to the trust setting. Has the created situation the
intended effect, i. e. are planned delegation relationships a result of the spec-
ified trust setting? What trust chains have evolved in the current situation?

180 D. Schmitz, G. Lakemeyer, and M. Jarke

– Since SNet is dedicated to an explorative use, it is very likely that the user
wants to make minor adjustments to an intermediate or final simulation
situation. FT and ST can help to ensure that the created scenario is still
consistent.

– Also the SNet approach has to struggle with complexity issues. While the
current implementation takes care of long simulation traces by using pro-
gression [22], the number of fluents considerably influences the complexity.
Thus, it might be possible that the modeler decides to omit the tracking
of some particular properties, in order to make the simulations faster (and
thus more interactive). After running several of such complex simulations, it
might be possible to adapt FT to work on logs of such simulations in order
to check for some specific dynamic property that might have been violated
inbetween. Due to the model-checking characteristic, potentially the check
can be performed for a whole set of simulation traces at the same time by
generalising their specifics.

6 Conclusion

In this paper, we presented a comparison of the TCD/SNet approach with two
other formalisms based on i*, Formal Tropos and Secure Tropos. While Secure
Tropos just as SNet considers trust issues, it focuses solely on static aspects. Also
the use of planning is different in the two formalisms: for one in regard to when
it is applied (modeling versus simulation run-time) and for another in regard to
how much user interaction is required. Nevertheless, both have many concepts
in common such as the separation of delegation and trust and the incorporation
of distrust and monitoring. ST’s model is even more detailed regarding the dif-
ference between permission and execution as well as the considerations about
ownership and provisioning. Thus, it needs to be investigated further whether
some of these details should also be incorporated in SNet. On the other hand,
SNet simulations could enrich the trust investigations of ST. While static analy-
ses of these issues can be seen as a first step, we emphasized the need to take
also the dynamics of trust into account.

FT provides more sophisticated means to express rich temporal constraints
than SNet. But many, more technical issues like entities and attributes are cov-
ered in SNet as well. Furthermore, although in general a formal approach like
model-checking is to be preferred over simulations, SNet does not have the re-
strictions of a finite domain while still being amenable to formal analysis at least
of the dedicated simulation trace. Another commonality concerns the use. Both
tools support the user to interactively explore the domain in order to find parts
that can be corrected (FT) or improved (SNet, see network rule adaptation).

Additionally, we discussed potentials of a combined use of these formalisms.
From SNet’s perspective, especially for initial, intermediate, or final situations,
i. e. snapshots from the dynamic simulations, both formalisms, Formal Tropos
and Secure Tropos, seem to provide helpful feedback that enriches the not yet
well established analysis features of TCD/SNet. The user can be supported in

Comparing Three Formal Analysis Approaches of the Tropos Family 181

evaluating the outcome of simulations and in regard to how to change the set-
ting to investigate the scenario in more detail. From FT’s and ST’s perspective,
the main advantage of a combination results from SNet’s simulation capability.
Especially, the clarification of how the “system-to-be” will interact with its envi-
ronment, also in regard to trust issues, seems to be valuable in order to smoothly
put the new or adapted system at work.

Thus, future work concerns investigating the combined uses in more detail.
Furthermore, comparisons with other i* based approaches can be considered as
for example the combination of i* and CASL [19], as well as the original work
of Wang and Lespérance [25].

Acknowledgment. This work was supported in part by the Deutsche For-
schungsgemeinschaft in its Priority Program on Socionics, and its Graduate
School 643 “Software for Mobile Communication Systems”.

References

1. Bryl, V., Massacci, F., Mylopoulos, J., Zannone, N.: Designing security require-
ments models through planning. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006. LNCS,
vol. 4001, pp. 33–47. Springer, Heidelberg (2006)

2. Castelfranchi, C., Falcone, R.: Trust and Deception in Virtual Societies, chapter
Social Trust: A Cognitive Approach. Kluwer, Dordrecht (2001)

3. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information sys-
tems engineering: The Tropos project. Information Systems 27(6), 365–389 (2002)

4. Alan, M.: Christie. Simulation – An enabling technology in software engineer-
ing [Accessed: 2007-11-20] (April 1999), http://www.sei.cmu.edu/publications/
articles/christie-apr1999/christie-apr1999.html

5. Cimatti, A., Clarke, E.M., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri,
M., Sebastiani, R., Tacchella, A.: NuSMV 2: An opensource tool for symbolic
model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404,
Springer, Heidelberg (2002)

6. Claßen, J., Eyerich, P., Lakemeyer, G., Nebel, B.: Towards an integration of Golog
and planning. In: Veloso, M.M. (ed.) IJCAI, pp. 1846–1851 (2007)

7. de Giacomo, G., Lespérance, Y., Levesque, H.J.: ConGolog, a concurrent program-
ming language based on the situation calculus: language and implementation. Ar-
tificial Intelligence 121(1-2), 109–169 (2000)

8. Fuxman, A., Liu, L., Pistore, M., Roveri, M., Mylopoulos, J.: Specifying and analyz-
ing early requirements in Tropos. Requirements Engineering Journal 9(2), 132–150
(2004)

9. Gans, G., Jarke, M., Kethers, S., Lakemeyer, G.: Continuous requirements man-
agement for organization networks: A (dis)trust-based approach. Requirements
Engineering Journal 8(1), 4–22 (2003)

10. Gans, G., Jarke, M., Kethers, S., Lakemeyer, G., Ellrich, L., Funken, C., Meis-
ter, M.: Requirements modeling for organization networks: A (dis-)trust-based ap-
proach. In: Proc. 5th IEEE Int. Symposium on Requirements Engineering (2001)

11. Gans, G., Jarke, M., Lakemeyer, G., Schmitz, D.: Deliberation in a metadata-based
modeling and simulation environment for inter-organizational networks. Informa-
tion Systems 30(7), 587–607 (2005)

http://www.sei.cmu.edu/publications/articles/christie-apr1999/christie-apr1999.html
http://www.sei.cmu.edu/publications/articles/christie-apr1999/christie-apr1999.html

182 D. Schmitz, G. Lakemeyer, and M. Jarke

12. Gans, G., Schmitz, D., Arzdorf, T., Jarke, M., Lakemeyer, G.: SNet reloaded: Roles,
monitoring, and agent evolution. In: Bresciani, P., Giorgini, P., Henderson-Sellers,
B., Low, G., Winikoff, M. (eds.) AOIS 2004. LNCS (LNAI), vol. 3508, pp. 68–84.
Springer, Heidelberg (2005)

13. Ghallab, M., Howe, A., Knoblock, C., McDermott, D., Ram, A., Veloso, M., Weld,
D., Wilkins, D.: PDDL – the planning domain definition language. In: AIPS 1998
Planning Committee (1998)

14. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Requirements engineering
meets trust management: Model, methodology, and reasoning. In: Proc. of the 2nd
Int. Conf. on Trust Management (iTrust) (2004)

15. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Modeling security require-
ments through ownership, permission and delegation. In: RE 2005. Proc. of the
13th IEEE Int. Requirements Engineering Conf (2005)

16. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Modeling social and indi-
vidual trust in requirements engineering methodologies. In: Proc. of the 3rd Int.
Conf. on Trust Management (iTrust) (2005)

17. Jarke, M., Eherer, S., Gallersdörfer, R., Jeusfeld, M.A., Staudt, M.: ConceptBase – a
deductive object base for meta data management. Journal of Intelligent Information
Systems 4(2), 167–192 (1995)

18. Kethers, S., Gans, G., Schmitz, D., Sier, D.: Modelling trust relationships in a
healthcare network: Experiences with the TCD framework. In: Proc. of the 13th
European Conf. on Information Systems (ECIS) (2005)

19. Lapouchnian, A., Lespérance, Y.: Modeling mental states in agent-oriented require-
ments engineering. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001,
pp. 480–494. Springer, Heidelberg (2006)

20. McCarthy, J.: Situations, actions and causal laws. Technical report, Stanford,
Reprinted 1968 in Minsky, M.(ed.) Semantic Information Processing, MIT Press
(1963)

21. Pnueli, A.: The temporal logic of programs. In: Proc. of the 18th IEEE Symposium
on Foundation of Computer Science (1977)

22. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press, Cambridge (2001)

23. Schael, T. (ed.): Workflow Management Systems for Process Organisations, 2nd
edn. LNCS, vol. 1096. Springer, Heidelberg (1996)

24. Schmitz, D., Lakemeyer, G., Jarke, M., Karanfil, H.: How to model inter-
organisational networks to enable dynamic analyses via simulations. In: Proc. 17th
Workshop on Agent-Oriented Information Systems (AOIS), pp. 697–711 (2007)

25. Wang, X., Lespérance, Y.: Agent-oriented requirements engineering using Con-
Golog and i*. In: Working Notes of the AOIS Workshop (2001)

26. Winograd, T., Flores, C.F.: Understanding computers and cognition - a new foun-
dation for design. Ablex Publishing Corporation, Greenwich (1986)

27. Yu, E.: Modelling Strategic Relationships for Process Reengineering. PhD thesis,
University of Toronto (1995)

M. Kolp et al. (Eds.): AOIS 2006, LNAI 4898, pp. 183–201, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Integration of Aspects with i* Models

Fernanda Alencar1, Jaelson Castro1, Ana Moreira2, João Araújo2,
Carla Silva1, Ricardo Ramos1, and John Mylopoulos3

1 Universidade Federal de Pernambuco, Brasil
fmra@ufpe.br, {jbc,ctlls,rar2}@cin.ufpe.br

2 Universidade Nova de Lisboa, Portugal
{amm,ja}@di.fct.unl.pt
3 University of Toronto, Canada

jm@cs.toronto.edu

Abstract. The i* framework has been widely adopted for agent-oriented
modeling, as it offers a notation that provides a description in terms of
dependency relationships among agents. However, the resulting models may be
large and complex, with scattered concerns within the same, or among several
models. These crosscutting concerns are not handled explicitly in i* models,
affecting several other elements in the same model. In this paper we investigate
if the Early Aspects, as promoted by the Aspect-Oriented Software
Development community, can help to deal with the complexity which may arise
when i* is used to develop large multi-agent systems. To achieve this we
identify crosscutting concerns, keeping them in separate models. The
consequence is a reduction in complexity and size of the original model.
Composition rules are defined simultaneously, to keep a record of these
modularized crosscutting elements. Thus, these rules work as transformations in
model-driven engineering allowing us to recover the original, more refined
model.

Keywords: Agent-Oriented Modeling, Aspect-Oriented Requirements Engin-
eering, Early-Aspects.

1 Introduction

The incremental evolution of paradigms allows software engineering to become
increasingly capable of managing the growing complexity of software applications.
Agent-oriented techniques appear as another approach for analyzing, designing and
implementing complex software systems. Although agent orientation is beginning to
be used in commercial and industrial applications [17], this paradigm cannot become
a mainstream approach unless a development process for engineering agent oriented
software systems is provided. In the last few years some techniques appeared to
address this, such as Tropos [8, 13], a framework which supports multi-agent systems
engineering. Tropos is based on the requirements engineering framework, i* [24]. It
supports the initial phases of software development lifecycle aiming at building
software that operates within a dynamic environment.

184 F. Alencar et al.

The i* framework provides a graphical description to specify dependencies
between actors in a system, emphasizing their intentions, responsibilities and
vulnerabilities. Since we are dealing with complex systems, the i* models can become
very large, hard to read and understand. This is largely due to the difficulty of
modularizing certain properties, or keeping crosscutting relationships localized.
Existing software development paradigms do not handle the aforementioned problems
well, decreasing the system reusability and maintainability.

Crosscutting concerns naturally cut across the boundaries of other concerns [16],
producing scattered and tangled representations (specifications and implementations)
that are hard to understand and maintain. Aspect-Oriented Software Development
(AOSD) aims at proposing techniques and mechanisms to modularize crosscutting
concerns in separate modules called aspects [3] and later compose them back. In the
last few years, several existing requirements engineering approaches (e.g. use case
driven, goal oriented and viewpoint centered) have been complemented to integrate
the advantages offered by aspect-orientation [4, 7, 21, 23, 15].

Aspect oriented requirements engineering [6] permits modularization and
composition of crosscutting concerns which cannot be encapsulated using artifacts
provided by both traditional approaches (e.g., use cases and view points) [21] and i*
models. Thus, we are investigating the principles of aspect orientation to incorporate
them in the development of i* models to reduce their complexity and to improve their
reusability and understandability.

This paper proposes a systematic approach to identify crosscutting concerns
present in the i* models and to compose these concerns with the remaining elements
in the model. The resulting models are simpler, therefore easier to understand,
maintain and evolve.

The rest of the paper is organized as follows. Section 2 presents an overview of
Aspect-Orientation and a short introduction to i* modeling framework. Section 3
introduces the Meeting Schedule example [24], which will be used to illustrate our
approach. In Section 4, we present our main contribution, a proposal for the
identification of crosscutting concerns in i* models as well as the definition of the
composition rules. Section 5 discusses some related work. Finally, Section 6
summarizes our work and points out open research issues.

2 Background

This section presents aspect-oriented software development concepts and the
modeling technique used for the definition of the requirements in the context of agent-
oriented software development.

2.1 An Overview of Aspect-Orientation

Aspect-Oriented Software Development (AOSD) [3] focuses on the modularization,
encapsulation and composition of crosscutting concerns. The term “crosscutting
concerns” refers to properties of software (concerns) that cannot be effectively
modularized using traditional software development techniques, such as object-
oriented methods. Notice that “crosscutting” is a relationship between concerns.

 Integration of Aspects with i* Models 185

When we say that a concern is crosscutting we are implicitly acknowledging some
dominant decomposition that offers the base over which the crosscutting concern
cuts across. This relationship highly depends on the representation chosen to model,
specify, or implement concerns. This means that what is crosscutting in
requirements may not be crosscutting in design, for example, or what is crosscutting
in an object-oriented representation may not be crosscutting in a functional
representation, and vice-versa1. Typical examples of crosscutting concerns are non-
functional requirements, such as security, fault tolerance, persistency. However,
crosscutting concerns can also be functional requirements, such as auditing, or
validation [5, 6, 7, 9].

Crosscutting concerns are encapsulated in separate modules, known as aspects, and
composition mechanisms are later used to weave them back with other core modules,
at loading time, compilation time, or run-time. However, aspects, as well as their
compositions, also have an important role to play before the implementation activity.
Aspects allow the modularization of crosscutting concerns that cannot be
encapsulated by a single use case [14], for example, and are typically spread across
several of them. Composition, on the other hand, apart from allowing the developers
to picture a broader part of the system, allows them to identify conflicting situations
whenever a concern contributes negatively to others. This offers the opportunity to
establish critical trade-offs before the architecture design is derived, supporting the
necessary negotiations among the stakeholders [21, 18].

AOSD aims at addressing such crosscutting concerns at the various levels of the
software development process, by providing means for their systematic identification,
separation, representation and composition.

2.2 The i* Framework

When developing systems, we usually need to have a broad understanding of the
organizational environment and goals. The i* technique [24] provides understanding
of the “why” by modeling organizational relationships that underlie systems
requirements. i* offers a modeling framework that focuses on strategic actor
relationships. It can be used to: (i) obtain a better understanding of the organizational
relationships among the various organizational agents; (ii) understand the rationale of
the decisions taken; and (iii) illustrate the various characteristics found in the early
phases of requirements specification. The participants of the organizational setting are
actors with intentional properties, such as, goals, beliefs, abilities and compromises.
These actors depend upon each other in order to fulfill their objectives and have their
tasks performed. The i* technique offers two models: Strategic Dependency (SD)
model, and Strategic Rationale (SR) model. To guarantee consistency among models,
all SD dependencies are preserved in the SR model.

Strategic Dependency Model. The SD model consists of a set of nodes and links
connecting them, where nodes represent actors and each link indicates a dependency
between two actors (see Fig. 1). The depending actor is called depender, and the actor
who is depended upon is called the dependee. Hence, an SD model consists of a
network of actors, capturing the motivation and the rationale of activities.

1 The interested reader can consult, for example, aosd.net and [5].

186 F. Alencar et al.

i* distinguishes four types of dependencies. Three of these are related to existing
intentions – goal dependency, resource dependency and task dependency, while the
fourth is associated with the notion of non-functional requirements, the so called
softgoal dependency. In i* we can also model different degrees of dependency
commitment on the part of the relevant actors (e.g. open, committed, or critical). We
can also classify actors into agents, roles and positions. An agent is an actor with
concrete physical manifestations (a person or a system). A role is an abstract
characterization of the behaviour of a social actor within some specialized context,
domain or endeavor. A position is a set of roles typically played by one agent. Finally,
i* supports the analysis of opportunities and vulnerabilities for different actors [24].

Strategic Rational Model. The SR model provides a more detailed level of modeling
by looking “inside” actors to model internal intentional relationships (see Fig. 2). It is
used to: (i) describe the interests, concerns and motivations of participant process; (ii)
enable the assessment of the possible alternatives in the definition of the process; and
(iii) provide the rationale behind the dependencies between the various actors. Nodes
and links also compose this model. It includes the previous four types of nodes
(present in the SD model, Fig. 1): goal, task, resource and soft-goal. However, three
new types of relationship are incorporated: (i) means-end that suggests that there
could be other means of achieving the objective (alternatives), (ii) task-decomposition
that describes what should be done in order to perform a certain task and (iii) the
means-end contributing for softgoals links (not identified on Fig. 2) that will represent
a partial contributions of a means (task ou softgoal) to an end (softgoal).

Tasks are partially ordered sequences of steps intended to accomplish some
(soft)goal. Tasks can be decomposed into goals and/or subtasks, whose collective
fulfilment completes the task.

3 Case Study

The case study we have chosen to illustrate our ideas is an extension of the Meeting
Schedule system [24]. The aim of the Meeting Schedule system is to support the
organization of meetings. For each meeting request, the meeting scheduler should try
to determine and broadcast a meeting date and location so that most of the intended
participants will participate effectively. The system finds dates and locations that are
as convenient as possible. The meeting initiator asks potential participants for
information about their availability to meet during a date range, based on their
personal agendas, as well as, an exclusion set of dates. The meeting scheduler comes
up with a proposed date. The date to be chosen must be an available date, and should
ideally belong to as many preference sets as possible. Participants would agree to a
meeting date once an acceptable date has been found. The example has been extended
to guarantee confidentiality for dates and location of the meeting, as well as for
participants’ data. When the meeting date is agreed, it should be announced to all
interested parties. Fig. 1 illustrates the i* Strategic Dependency Model for this
example.

 Integration of Aspects with i* Models 187

Fig.1. The SD model for the Meeting Schedule system

The meeting initiator depends on participants to attend the meeting. S/he delegates
most of the work to the meeting scheduler. This determines what are the acceptable
dates, given the available information (task dependency EnterAvailDates(m)). Note
that the meeting scheduler depends on the meeting initiator to provide a date range
(task dependency EnterDateRange(m)) for the scheduling. The meeting initiator does
not care how the scheduler does this, as long as the acceptable dates are found. This is
reflected in the goal dependency MeetingBeScheduled from the initiator to the
scheduler. Also, it does not care how the scheduler does the meeting announcements.
After finding a meeting date, it will broadcast the meeting date to all participants. A
participant requires confidentiality of the meeting and personal information (softgoal
dependency Confidentiality [m, p]). Also, to find a consensual date, participants
depend on the meeting scheduler for date proposals (resource dependency
ProposedDate(m)). Once proposed, the scheduler depends on the participants to
indicate whether they agree with the date or not (resource dependency
Agreement(m,p)). For key participants, the meeting initiator depends critically on
their attendance, and thus also on their assurance that they will attend (softgoal
dependency Assured(Attends-Meeting(ip.m))).

Fig. 2 shows the strategic rationale model for the Meeting Scheduler actor. This
model provides a more detailed level of modelling by looking “inside” the actor to
model internal intentional relationships. In the SR model, task-decomposition (like
Schedule Meeting that is decomposed in a sub-goal, Find Agreeable Slot, and three
sub-tasks: Handle Response Time, Obtain AvailDates, Obtain Agreement) provides a
hierarchical description on intentional elements. Each element or sub-element in a
task is needed for the success of this task. The means-end link in the SR model

188 F. Alencar et al.

provides understanding about why an actor would engage in some tasks, pursue a
goal, need a resource or want a softgoal. In this example, we can see a means-end link
between the Find Agreeable Slot goal (the end) and the Merge Avail Dates task (the
means through which the end is reached).

Fig. 2. The Meeting Schedule system partial SR model

4 Handling Crosscutting Concerns in i* Models

A general approach for handling crosscutting concerns in i* models is illustrated in
Fig. 3. It takes as input the i* models and consists of four steps: (1) identification and
representation of candidates aspects; (2) identification of the relationship among
candidate aspects; (3) composition; and (4) trade-offs analysis, which can initiate a
new iteration. The first and second phases are performed in parallel.

The first activity of our approach, namely the identification and representation of
crosscutting concerns, is described in Section 4.1. The second activity, identification
of relationships among aspects, is outlined in Section 4.2. The third activity,
composition, is considered in Section 4.3finally, the fourth activity, trade-off analysis,
will be explored in future work, having as basis the previous results in [21].

 Integration of Aspects with i* Models 189

Step 1 - Identification and Representation
of Candidate Aspects.

Step 2 – Identification of
Relationship among Candidate
Aspects.

Aspects Representation in i*

Step 4 - Trade-off Analysis

Composition Rules
Definition

Composition of the
Candidate Aspect

Dependee Actor X Crosscutting
Concerns

Guideline 2 Guideline 3

Analysis of the Concerns’
Operationalization in SR

Identification

Step 3 - Composition

Guideline
1

i* Models

SR Model

SD Model

The Proposed Approach
Aspect-
oriented i*
models

Fig. 3. Proposed approach

4.1 Identification and Representation of Candidate Aspects

A crosscutting concern can be seen as a model element that is required by several
other model elements. In [1, 2] we proposed three guidelines to detect crosscutting
concerns in the SD and SR model, as well as to eliminate redundancies. These
guidelines are as follows:

Guideline 1 (in the SD model): If the same dependum is provided by at least two
dependee actors, then the operationalization corresponding to that dependum is a
candidate crosscutting concern.

For example, the Meeting Initiator actor (Fig. 1) depends to the Meeting
Participant (dependee actor) to satisfy a Response Time softgoal dependency. On the
other hand, the Meeting Participant actor is related with the Meeting Scheduler
(dependee actor) through the same dependency. The two distinct dependee actors
operationalize the same dependum element (Response Time), then its
operationalization will be a candidate crosscutting concern.

Guideline 2 (in the SR model): If a task, that is directly or indirectly related to an
external dependency, is required by (i.e. is a decomposition element of) two or more
tasks (which are also related to other external dependencies), then that task is a
candidate crosscutting concern. Notice that a task is indirectly related to an external
dependency if, in the hierarchy where it belongs, at least one of its parents is
connected to an external dependency.

For example (Fig. 2), the Obtain Proposed Date task is simultaneously required by
the Broadcast Meeting Data and Schedule Meeting tasks. Hence, the first task is a
candidate crosscutting concern.

190 F. Alencar et al.

Guideline 3 (remove redundancies): The list of crosscutting concerns identified by
Guideline 2, which corresponds to operationalizations of crosscutting concerns
identified by Guideline 1, need to be merged together. The final crosscutting concerns
are those that correspond to the operationalizations.

According to guideline 2 (Fig. 2) the Handle Response Time task, that operation-
alizes the softgoal dependum Response Time, will be a candidate aspect since this task
is simultaneously required by the task Schedule Meeting and Announce Meeting. But
this same task was captured by the guideline 1.

Note that the final crosscutting concerns are, in fact, particular kinds of tasks. For
modularization purposes and following the principles of AOSD we should externalize
and modularize these tasks, taking them away from the original actors, and place each
of them in a new kind of model element, the aspect (see Fig.4). Initially the depen-
dency between the depender and the dependee actors involved in the crosscutting
concern (Fig. 4a) is replaced by an aspect that modularizes the crosscutting concern.
A “Crosscuts” relationship between the aspect and the element at the dependee actor
it affects is defined (Fig 4b.). The type of the original link is indicated by the labels
TD (Task-Decomposition link), or ME (Means-Ends link). The direction indicated by
the triangles suggests the composition direction, meaning that the behaviour of the
source element needs to be transferred to the behaviour of the target elements. The
relationship between the depender and the dependum is specified by the compositions
rules (see Fig. 4b). The candidate aspect is represented by a star (see Response Time
in Fig. 4c) which includes an aspectual task (eg. Handle Response Time) that
operationalizes its behaviour and a set of composition rules (e.g. Response Time
Composition Rules) that specifies the way in which the aspectual task is weaved with
(or affects) the model elements that it originally was related to.

We consider an intentional element (external or internal in i* models) which
appears at least twice as a candidate crosscutting concern. However, we recognize
that we need to perform further analysis to ensure that this element is an aspect in
posterior development phase. For example, let us consider security as a concern
which is represented as a softgoal in i* models. This softgoal is captured by the
guideline 1 or guideline 2, and it will be modeled as an aspect at the requirements
level. However, in a later stage we may conclude that this concern may not be an
aspect because security may be related with a physical feature or a logical feature.
Therefore, the full assurance that a candidate crosscutting concern will become an
aspect depends on the abstraction level where this concern is specified.

Applying Guidelines to Meeting Schedule Example. By applying Guideline 1 to the
SD model (Fig. 1), we obtain the following candidate crosscutting concerns: Handle
Correctness and Handle Response Time tasks which operationalize Correctness and
Response Time softgoals, respectively. On the other hand, by applying Guideline 2,
the crosscutting candidates are Obtain Agreement, Obtain Proposed Date, Handle
Correctness, Handle Response Time and Handle Confidentiality tasks.

Finally, with guideline 3, the operationalizations of some of the crosscutting
concerns identified by guideline 1 are kept, while the corresponding ones given by
guideline 2 are eliminated. This can be easily seen in the SR model (Fig. 2), where
Correctness, Response Time and Confidentiality are operationalized by Handle

 Integration of Aspects with i* Models 191

Fig. 4. An aspect element

Correctness, Handle Response Time and Handle Confidentiality. Therefore, the final
list of crosscutting concerns is: Handle Response Time, Handle Correctness, Handle
Confidentiality, Obtain Agreement and Obtain Propose Date.

4.1.1 Representing Aspects in i*
Since crosscutting concerns or aspects are scattered concepts that appear repeatedly in
a representation (in this case i* models), their externalization and modularization will
simplify the original representation. This can be seen in Fig. 5 where an aspectual SR
model is shown. Aspects are represented by stars with its aspectual tasks and the
composition rules as specified in section 4.3. The crosscutting relationships between
each aspect and other model elements are shown as arcs, with a dark semi-circle. The
direction indicated by the semi-circle suggests the direction of the composition,
meaning that the source element’s behaviour needs to be “injected” into the target
elements’ behaviours. Note that a label is placed on a crosscut link to indicate if the
internal link is a task-decomposition (label TD) or a means-ends link (label ME) of
the i* models, which will be recovered through the composition rules. When the
actor’s behaviour is expanded, the aspects can crosscut goals, softgoals, or tasks (e.g.,
the aspect Response Time crosscuts Announce Meeting and Scheduling Meeting tasks
in the Meeting Scheduler actor, see Fig. 5). However, when the actor is contracted we
can not show the intentional element affected by the aspect (e.g., the aspect Response
Time crosscuts the Meeting Participant actor).

4.2 Identification of Relationship Among Candidate Aspects

From both i* models (e.g., Fig. 1 and Fig. 2) and the three guidelines proposed
(Section 4.1) we relate in a table (Table 1) the candidate crosscutting concerns
(columns) with the respective actors which are responsible for their operationalization
(lines). Each cell in Table 1 contains information about which dependum is going to
be operationalized by the task (candidate to become a crosscutting concern) and
which are the depender actors on this relationship. In such way, this matrix facilitates
the identification of scattered concerns through several dependee actors and its

192 F. Alencar et al.

Fig. 5. An aspectual SR model

Table 1. Crosscutting concerns and its dependum. RT: Response Time; C: Correctness; Co:
Confidentiality; PD: Proposed Date; MP: Meeting Participant; MS: Meeting Scheduler; MI:
Meeting Initiator

Dependee
Actor

Candidate Crosscuting Concerns

Handle
Response

Time

Handle
Correctness

Handle
Confidentiality

Obtain
Agreement

Obtain
Proposed

Date
Meeting

Participant
MI/RT MS/C

Meeting
Scheduler

MP/RT,
(MI/RT)

MP/C MP/Co MS/- MP/PD

dependent actors, becoming useful for defining composition rules. For the Meeting
Scheduler example (see Table 1), the first cell in the first line (MI/RT) specifies that
Response Time (RT) will be operationalized by the dependee actor Meeting
Participant (MP) which has the Meeting Initiator as its depender actor through the
task Handle Response Time. In the first cell at the second line the same Response
Time is being operationalized by dependee Meeting Scheduler (MS) which has two
depender actors Meeting Participant and Meeting Initiator. Hence, in the set of
composition rules for this concern, there is a rule indicating the actors that need
(depend on) this concern as well as the actors (dependees) that will operationalize it

 Integration of Aspects with i* Models 193

(MP and MS). For simplicity, in this paper we only expand the actor Meeting
Scheduler (Fig.2).

In Table 1, the cell corresponding to column Obtain Agreement and line Meeting
Scheduler (MS/-), specifies that the task Obtain Agreement is a candidate concern and
is an internal task in the depender actor Meeting Scheduler which dependee actor is
Meeting Scheduler. This task was captured by guideline 2.

4.3 Composition

The composition rules define “where” and “how” a crosscutting concern affects other
concerns in a system. Hence, before performing a composition, it is necessary to
identify, in the SR model, which elements are related with the crosscutting concerns
and, in the SD model, which actors depend on the operationalization of these concerns
(see Table 2). The next step defines a set of rules and operators to help us to simplify
the i* models and, if needed, also to recover the original one.

Table 2. Identification of the crosscutting concerns in the SR model. AM: Announce Meeting;
SM: Schedule Meeting; OPD: Obtain Proposed Date; OAD: Obtain Avail Dates; BMD:
Broadcast Meeting Data.

Dependee
Adtor

Candidate Crosscutting Concerns

Handle
Response

Time

Handle
Correctness

Handle
Confidentiality

Obtain
Agreement

Obtain
Proposed

Date
Meeting

Scheduler
AM, SM AM

AM, OAD,
OPD

AM, SM SM, BMD

As we highlight in the identification rules, the crosscutting concerns can be goals,
softgoals or tasks in the SR model, but in this paper we are only considering tasks. In
the SR model, tasks either (i) are going to be decomposed into sub-elements (which
can be any type of dependum, including another task); or (ii) are going to be the
means to achieve an end (means-end link), where we consider that the most common
situation is that the end is a goal or a softgoal. We call parent (task) the task that is
being decomposed (decomposition task link in the SR model). Hence, in Table 2, for
each of the identified crosscutting concern (column), for each of the dependee actors
(line), it is informed which elements are related to the crosscutting concern. In case
the crosscutting concern is the parent task itself, we associate the dependee actor
name to it. To fill in Table 2, we use as reference the model depicted in Fig. 1, Fig. 2
and Table 1. Once more, note that for our example, we just expand the actor Meeting
Scheduler. For example, let us consider the candidate concern Handle Response Time,
in the SR model (Fig. 2) and in first column in Table 1. As we can see (Table 2), the
first cell (AM, SM) specifies that Handle Response Time is a sub-task, in the task-
decomposition link, which has Announce Meeting (AM) and Schedule Meeting (SM)
as main tasks. Both tasks need Handle Response Time to be satisfied.

To fully complete Table 2, it is necessary to expand all the dependee actors into
their corresponding SR models. The information presented in Table 2 is the base to
help define composition rules.

194 F. Alencar et al.

Defining Composition Rules. In the SD model, it is important to preserve the
dependum type that is involved with a dependency relationship (goal, task, softgoal or
resource), as well as the actors who depend on the dependency relationship (depender
actors). Hence, we propose: (i) an operator is the type of; and (ii) an operator has
depender … with dependee. Table 3 presents the general form of the rules that
preserve the links in the SD model. The symbol “|” is a separator between rules
variation. Elements in a list are separated using “,”.

Table 3. Rules to the dependencies links in the SD model

Rules for dependency links
Aspect<name> is of type <dependum type >

Aspect<name> has depender
<depender name> |
<list of depender name>

with dependee <dependee name>

Let us consider the crosscutting concern Response Time (Fig. 1 and Table 1). The
first rule shows the dependum type involved in the crosscutting relationship (Aspect
Response Time is the type of a softgoal). The second one defines, which are the
depender and dependee actors related to a given dependency. Hence, we end up with
the following example:

Aspect Response Time is of type softgoal;
Aspect Response Time has depender Meeting Initiator with dependee Meeting

Participant;
Aspect Response Time has depender Meeting Participant with dependee Meeting

Scheduler.

Let us now focus on the SR model since when we externalize a crosscutting
concern, all the links from this element with internal components of the SR model
must be kept in the new aspectual element (e.g., in a task decomposition, all links
with its sub-elements must be kept). For the Response Time aspect operationalized by
Meeting Scheduler we need to define rules to keep the task-decomposition link
between the Handle Response Time and the Schedule Meeting and Announce Meeting
(Fig. 2). Thus, we define the rule for a task decomposition, in which the incorporated
aspectual task (Handle Response Time) is a sub-element of the decomposition. The
operator is sub-task of indicates the parent task which includes the aspectual task. If
that task belongs to more than one decomposition tree then a list of parent tasks is
established. We also need to keep the information about which is the actor responsible
for the operationalization. Hence, we also define an operator in which informs the
dependee actor. Therefore, we have the following rule expressed in Table 4.

Table 4. Rule for a sub-task in a task decomposition link in the SR model

Aspect <name>.
<aspectual task>

is a sub-
task of

<task name> |
<list of tasks name> |
Aspect.<task name> |
Aspect.<list of tasks name> |
<list of Aspect.<task name> |
<list of Aspect.<list of tasks name>

in
<dependee
name>

 Integration of Aspects with i* Models 195

For the Response Time element in Fig. 2, we have:

Aspect Response Time.Handle Response Time is a sub-task of (Announce
Meeting, Schedule Meeting) in Meeting Scheduler.

This means that the externalized Handle Response Time task is a sub-task of the
Announce Meeting and Schedule Meeting tasks which belongs to the Meeting
Scheduler dependee actor. However, if we observe the Table 2 that any of the parents
tasks is also a candidate aspect (it is not the case in our example), then we must
change the rule to:

Aspect DependumName.OperationalTask is a sub-task of (Aspect.
OperationalTaskA) in Dependee Actor

A second case to be analyzed is related to the means-end links. We propose the
operator is the means of which defines that the aspectual task is a way of satisfying a
given type dependum. In our case study we do not have any. The general rule is
defined in Table 5.

Table 5. Rules for a means-end link in the SR model

Aspect<name>.
<aspectual
task>

is the means of

<end name> |
<list of end name> |
Aspect.<end name> |
Aspect.<list of end name> |
<list of Aspect.<end name> |
<list of Aspect.<list of end name>

in <dependee name>

In this case we are considering that the end element can be a goal or a softgoal,

although it can be any type of dependum.
The third rule type is related to links which must be recovered when the aspectual

task is the root element in a task decomposition link. In this case, all the links and
children must be re-established through the composition rule. In Table 6 we present
the general rules.

Table 6. Rules for the root of a task decomposition link

Aspect<name>.
<aspectual task> is the root of

<sub-element name> |
<list of sub-element name> |
Aspect.<sub-element name> |
Aspect.<list of sub-element
name> |
<list of Aspect.<sub-element
name> |
<list of Aspect.<list of sub-
element name>

in <dependee name>

Aspect<name>.
<aspectual task>

is root in <dependee name>

196 F. Alencar et al.

In this table, the second rule expresses the situation in which the aspectual task is
the root of a whole decomposition tree in the dependee actor under analysis. We do
not have this case in our example.

Finally, Table 7 summarizes all the operators proposed in the decomposition rules.

Table 7. Operators used in the composition rules

Operator Description
with dependee It defines the actor which operationalizes the crosscutting concern.
is of type It defines the type of dependency that was included by the aspect.
has depender It restores the link among the dependence element included by the

aspect and the depender actor.
Aspect It defines the object as an aspect.

<name> It represents the name of dependum or element.

in <dependee name> It informs in which dependee actor the action is being executed.

is root It defines that the aspectual task is the root of the whole decomposition
tree.

is sub-task of It defines the decomposition link between the aspectual task and its
“father” task.

is the means of It restores the means-end link between the aspectual task and its end.

is the root of It informs that the aspectual task is being decomposed and restores the
link with its parts.

<list of…> It represents a group of elements separated by “,”

The proposed composition rules constitute an initial exercise to define a fully

fledged language which ensures that all i* links in the original model are preserved.
These rules are being improved. Thus, with these rules we can know which
intentional element is considered as a crosscutting concern (in particular, we are
dealing with tasks). Composition rules define how and when a crosscutting concern
affects other concerns in a system. The “how” dimension is graphically captured by
adding a label to the crosscuts link. This label indicates if the crosscutting concern is
weaved with the other concerns of the system through a task-decomposition link (TD
label) or a means-ends link (ME label) (see Fig. 5). Although the original i*
framework only represents structural features of the desired system we add temporal
feature through two new constructors: is inserted after, and is inserted before
(likewise the reserved word of the AOP). These constructors capture the “when”
dimension of the composition rules.

Let us consider the Response Time candidate aspect (Fig. 1, Fig. 2, Table 1 and
Table 2). The set of composition rules which is inside the respective aspect will be as
follows:

Aspect Response Time is of type softgoal;
Aspect Response Time has depender Meeting Initiator with dependee Meeting

Participant;

 Integration of Aspects with i* Models 197

Aspect Response Time has depender Meeting Participant with dependee Meeting
Scheduler;

Aspect Response Time.Handle Response Time is a sub-task of (Announce Mee-
ting,Schedule Meeting) in Meeting Scheduler.

Aspect Response Time.Handle Response Time is a sub-task of Participant Be
inMeeting in Meeting Participant 2

Aspect Response Time.Handle Response Time is inserted after Aspect Confidentiality

Now let us considerer another candidate aspect: Confidentiality. The set of the
composition rules is as follow:

Aspect Confidentiality is of type softgoal;
Aspect Confidentiality has depender Meeting Participant with dependee Meeting

Scheduler;
Aspect ConfidentialityHandle Confidentiality is a sub-task of (Announce Mee-

ting,Obtain Avail Dates, Aspect.Obtain Proposed Date) in Meeting
Scheduler.3

Aspect ConfidentialityHandle Confidentiality is inserted before Aspect Response
Time

Finally we have to do the same with all candidates presented in the Tables 1 and 2.
Furthermore, all actors need to be expanded in SR model.

5 Related Work

In [23] we identify aspects in the requirements engineering level. This work has been
made for the approach presented in [7], while this new approach in more generic. In
[21] we identified aspects at early-requirements engineering level. We called them
“candidate aspects”, since at this early stage we are not sure if they will be handled as
aspects during later stages of the software development process. We also based our
approach in the i* framework [24] and tried to integrate the results within the
requirements engineering model proposed before. The goal was to propose a set of
guidelines to help identifying concerns and describe each one using a proposed
template, but not directly using the i* models. In [7] one have an extension of this
work, proposing a new process to compose the concerns in which it is introduced the
notion of match point, dominate concerns and operators based on LOTOS to define
composition rules.

In [27] the authors claim that satisfying OR-decomposed subgoals in the KAOS
[10] model typically leads to tangled implementations, and agents responsible for
multiple OR-refined goals should be implemented in the aspect-oriented manner.
Instead of proposing requirement engineering (RE) treatments directly mapped to

2 This case is not represented in Fig. 2 since this is a simplified version of the real case.

3 The task Handle Confidentiality (Table 2) is a sub-task of the task Obtain Proposed Date that
is a candidate aspect.

198 F. Alencar et al.

aspects, they examined existing well-established RE models and identified patterns in
these models that could be better designed and implemented using aspect-oriented
programming. They started from the code level and, through the technique of aspect
mining, identified application features existing in a crosscutting fashion. In next step,
they performed a consolidated modeling of the application requirements in terms of
KAOS concepts. Then they compared the goal decomposition and the actual code
decomposition, trying to identify the connection patterns in the goal decomposition
graph which would give rise to aspects.

In [11] the authors advocate that the available agent- and goal-based approaches
lack the ability to turn soft issues into precisely defined, agreed-upon, and
“implementable” solutions. They describe a structured, goal-oriented, agent-based
Requirements Engineering Framework (REF), where quality modelling is adopted
and explicitly devised to support the requirements engineering process for complex
socio-technical systems. They also attempt to deal with crosscutting concerns but
REF emphasizes the operational role that soft goals can play in deriving the
requirements of a new system. Our approach aims at identifying non-functional and
functional requirements as candidate crosscutting concerns and improve the original
i* model complexity [24].

In our previous work [26] we show that aspects can be discovered during goal-
oriented requirements analysis. The proposal includes a systematic process for
discovering aspects from relationships between functional and non-functional goals.
The process presents a systematic way for the refinement of a V-graph. During each
step of the process, the goal analysis tool is used to detect conflicts and deteriorations.
The process ends when all the root goals and softgoals are satisfied. At this stage, we
are able to identify candidate aspects by identifying tasks that have a high fan-in. The
resulting graph can be further refined if candidate aspects are grouped into what we
called goal aspects.

Multi-agent systems (MAS) are characterized by agency properties such as
autonomy, adaptation and interaction, which are potentially crosscutting [12]. In this
paper aspect-oriented mechanisms are used to modularize agency concerns (such as,
interaction, adaptation, autonomy, learning, mobility and collaboration). Thus
considering that agent concerns can be modeled through a set of intentional elements
in i* models, we argue that those features can be captured as crosscutting concerns by
our approach. In [20] the authors proposed to integrate i*, scenarios and AspectT in
the context of MAS. In particular, the authors consider only softgoals as crosscutting
concerns in i* models. These softgoals are implemented as aspects, as well as agency
properties have been implemented in [12] as aspects. In our paper any intentional
element of i* framework (goal, softgoal and task) can be considered as a crosscutting
concern and may be implemented as an aspect too, but at this moment we are only
focusin on tasks.

Our approach, outlined in Section 4, identifies the crosscutting concerns directly
from the organizational model and does not need to use auxiliary RE techniques to
achieve the purpose. The proposed composition rules ensure that all the links between
the elements in the original models are re-established.

 Integration of Aspects with i* Models 199

6 Conclusions and Future Work

In this paper we have introduced an approach to support early aspects identification in
agent-oriented software development. In particular, we propose a set of guidelines to
help the identification and representation of crosscutting concerns from the i* models
which is the basis for Tropos. In particular, in the i* models, each actor can be
autonomous as it is quoted by agent-oriented software technologies [25], and it has
agency concerns which are associated with any intentional element in the i*models. In
fact, the SD and SR models were extended to represent aspectual concepts and have
its graphical complexity reduced.

By addressing crosscutting concerns earlier on agent-oriented software
development, we will avoid tangled and scattered software artefacts. These
crosscutting concerns are responsible for producing tangled representations that are
difficult to understand and maintain. The identification and specification of
crosscutting concerns in early phases will result in better support for modularization.
This, in turn, helps us to reduce the complexity of the i* models, promoting
understandability, and to modularize the requirements that are scattered and tangled in
the system specification, which supports requirements change and its impact on other
requirements.

The validation of these ideas has been achieved in two ways: we applied the rules
to the YKeyK case study [23], and used the guidelines in [22] to transform i* model
into UML models and then identify, in these models, the potential crosscutting
concerns [1]. In both cases the results obtained were similar.

Our research is still in its infancy, but the idea is to identify graphics’ features, e.g.
high fan-in, that give us some evidence about requirements that are scattered or
tangled over the model specification. These requirements will be identified as
candidate crosscutting concerns. Crosscutting concerns at the requirements level are
candidate aspects [21]. The candidate aspects can be mapped onto design aspects,
functions or architecture decisions. In architectural design, the next step beyond the
aspects identification is their specification and integration with other architectural
components. Our future work will consider how these mapping will take place.

In this paper we have dealt explicitly with task and task-decomposition links when
identifying and separating crosscutting concerns. However, we emphasize that a
crosscutting concern can belong to any intentional element type (goal, softgoal or
task). Moreover, the relationship involved in the weaving can be a means-ends link
besides task-decomposition links. Typical crosscutting concerns are non-functional
requirements although a crosscutting concern can also be a functional requirement
represented as a set of intentional elements in i* models. Currently, these issues are
being addressed.

As future work we also intend to (i) apply our approach to more case studies; (ii)
support aspectual concepts in i* modeling support tools (e.g. OME); (iii) develop a
metamodel for our approach; iv) improve the guidelines to capture routines [24] in i*
models; (v) formalize the approach through the Software Process Engineering
Metamodel (SPEM) [19] notation or other appropriate formalism. Some of these
additional works are already being carried on.

200 F. Alencar et al.

Acknowledgements

This work was supported by several research grants: CAPES/ GRICES Proc. 129/05,
and SOFTAS Project, POSC/EIA/60189/2004.

References

1. Alencar, F., Silva, C., Moreira, A., Araújo, J., Castro, J., Mylopoulos, J.: Using Aspects to
Simplify i*Models. In: RE 2006. Poster in: 14th International Requirements Engineering
Conference, Minnesota-USA (September 11-15, 2006)

2. Alencar, F., Moreira, A., Araújo, J., Castro, J., Silva, C., Mylopoulos, J.: Towards an
Approach to Integrate i* with Aspects. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006. LNCS,
vol. 4001, Springer, Heidelberg (2006)

3. AOSD portal, http://aosd.net
4. Araújo, J., Moreira, A., Brito, I., Rashid, A.: Aspect-Oriented Requirements with UML. In:

Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.) UML 2002 - The Unified Modeling
Language. Model Engineering, Concepts, and Tools. LNCS, vol. 2460, Springer,
Heidelberg (2002)

5. Baniassad, E., Clements, P., Araújo, J., Moreira, A., Rashid, A., Tekinerdogan, B.: Discovering
Early Aspects. IEEE Software, Special Issue on Aspect-Oriented Programming (January/
February 2006)

6. Berg, K., Conejero, J.M.: A Conceptual Formalization of Crosscutting in AOSD. In:
Workshop on AOSD, in JISBD 2005, Granada (September 2005)

7. Brito, I., Moreira, A.: Integrating the NFR framework in a RE model. In: Workshop on
Early Aspects, AOSD 2004, Lancaster, UK, pp. 22–26 (March 2004)

8. Castro, J., Kolp, M., Mylopoulos, J.: Towards Requirements-Driven Information Systems
Engineering: The Tropos Project. In: Information Systems Journal, vol. 27, pp. 365–389.
Elsevier, Amsterdam (2002)

9. Clarke, S., Baniassad, E.: Aspect-Oriented Analysis and Design: The Theme Approach.
Addison-Wesley, Reading (2005)

10. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition. In:
Science of Computer Programming, North Holland, vol. 20, pp. 3–50 (1993)

11. Donzelli, P., Bresciani, P.: Improving Requirements Engineering by Quality Modeling– A
quality-based requirements engineering framework. Journal of Research and Practice in
Information Technology (JRPIT) 36(4), 277–294 (November 2004)

12. Garcia, A.F.: From Objects to Agents: An Aspect-Oriented Approach. PhD thesis,
PUCRio (2004)

13. Giorgini, P., Kolp, M., Mylopoulos, J., Castro, J.: Tropos: a Requirements-Driven
Methodology for Agent-Oriented Software. In: Book Chapter in Agent-Oriented Methodo-
logies, pp. 20–45. Idea Group, USA (2005)

14. Jacobson, I.: Object-Oriented Software Engineering - A Use Case Driven Approach. ACM
Press, New York (1992)

15. Jacobson, I., Pan-Wei, N.: Aspect-Oriented Software Development with Use Cases.
Addison-Wesley, Reading (2005)

16. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J., Irwin, J.:
Aspect-Oriented Programming. In: Aksit, M., Matsuoka, S. (eds.) ECOOP 1997. LNCS,
vol. 1241, Springer, Heidelberg (1997)

 Integration of Aspects with i* Models 201

17. Luck, M., McBurney, P., Preist, C.: Agent technology roadmap: Enabling next generation
computing. AgentLink report (2003), http://www.agentlink.org/roadmap

18. Moreira, A., Rashid, A., Araújo, J.: Multi-Dimensional Separation of Concerns in Requirements
Engineering. In: RE 2005. The 13th International Conference on Requirements Engineering,
IEEE Computer Society, Los Alamitos (2005)

19. Object Manage Group: Software Process Engineering Metamodel (SPEM) Especification.
Report, V. 1.1. Jan. 2005, Last access (September 2007), http://www.omg.org/docs/formal/
05-01-06.pdf.

20. Oliveira, A.P.A., Cysneiros, L.M., Leite, J.C.S.P., Figueiredo, E.M.L., Lucena, C.J.P.:
Integrating scenarios, i*, and AspectT. In the Context of Multi-Agent Systems. In:
CASCON 2006 - The 16th Annual International Conference on Computer Science and
Software Engineering, Toronto, Canada (2006)

21. Rashid, A., Moreira, A., Araújo, J.: Modularization and Composition of Aspectual
Requirements. In: AOSD 2003. Proceedings of the International Conference on Aspect-
Oriented Software Development, USA (2003)

22. Santander, V.F.A., Castro, J.: Deriving Use Cases from Organizational Modeling. In: RE
2002. Proceedings of the International Conference on, Germany (2002)

23. Spies, E., Rüger, J., Moreira, A.: Using I* to Identify Candidate Aspects. In: Baar, T.,
Strohmeier, A., Moreira, A., Mellor, S.J. (eds.) UML 2004. LNCS, vol. 3273, Springer,
Heidelberg (2004)

24. Yu, E.: Modeling Strategic Relationships for Process Reengineering. Ph.D. thesis,
Department of Computer Science, University of Toronto, Canada (1995)

25. Yu, E.: Agent-Oriented Modeling: Software Versus the World In Agent-Oriented Software
Engineering. In: Wooldridge, M.J., Weiß, G., Ciancarini, P. (eds.) AOSE 2001. LNCS,
vol. 2222, Springer, Heidelberg (2002)

26. Yu, Y., Leite, J.C.S.P., Mylopoulos, J.: From goals to aspects: Discovering aspects from
requirements goal models. In: Proceedings of the International Conference on RE 2004,
pp. 38–47. IEEE Computer Society, Los Alamitos (September 2004)

27. Zhang, C., Jacobsen, H., Yu, Y.: Linking Goals to Aspect. In: Proceedings of the
Conference on RE 2005, IEEE Computer Society, Los Alamitos (September 2005)

M. Kolp et al. (Eds.): AOIS 2006, LNAI 4898, pp. 202–211, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Enhancing Information Sharing Through Agents

Marco Mari, Agostino Poggi, Michele Tomaiuolo, and Paola Turci

Dipartimento di Ingegneria dell’Informazione

Università degli Studi di Parma
Viale delle Scienze, 181A – 43100 – Parma

{mari,poggi,tomamic,turci}@ce.unipr.it

Abstract. This paper presents RAIS, a peer-to-peer multi-agent system for
information sharing among a community of users connected through the
Internet. RAIS offers a similar search power of Web search engines, but avoids
the burden of publishing information on the Web and guarantees a controlled
and dynamic access to information. The use of agent technologies has made
straightforward the realization of three of the main features of the system: i)
filtering of information coming from different users, on the basis of the
previous experience of the local user, ii) pushing of new information that can be
of interest for a user, and iii) delegation of access capabilities, on the basis of a
reputation network, built by the agents of the system on the community of its
users.

Keywords: Information sharing, multi-agent systems, peer-to-peer.

1 Introduction

The storage capability of hard disks is constantly growing, while the newly available
space is quickly filled with a large amount of data in different and heterogeneous
formats. The ordering of such data is a time wasting and often boring task: the result
is that more and more files, containing important information, are lost or forgotten on
hard drives. The classical file searching tools (e.g., Windows search function) are not
effective: for each request they analyse the whole drive, and they support only few
file formats. In last months, the providers of the main Web search engines (Google,
Microsoft with MSN and Yahoo!) have released desktop search tools that make a
research on a local drive as easy and fast as a Web search. These tools run in the
background (when CPU load is low) and index the content of a wide range of file
formats (e.g.: Office, PDF, e-mail, HTML, …) in a way similar to a Web crawler.
Moreover, Google has released an SDK [1] for its desktop search software [2]. The
SDK empowers developers to write plug-ins thanks to a set of APIs using COM and
HTML/XML.

Besides a local drive, the better place to find files and, more in general,
information is the Internet. The most used tools to share contents and information,
avoiding the burden of exporting them on the Web, are peer-to-peer systems. The
exchange of multimedia files with a peer-to-peer system is highly effective because
their contents can be easily categorized by the title. On the other hand, files holding

 Enhancing Information Sharing Through Agents 203

more information (e.g., documents, e-mails, etc.) could be effectively shared only if
the categorization takes into account the whole content.

Finally, there is evidence from several research studies [3][4][5][6] that agents
represent one of the most suitable technologies which can be used to meet the
performance needs for the realization of effective information sharing systems.

This paper presents a system, called RAIS, that tries to combine the features of
peer-to-peer information sharing systems and the Web. The next section introduces
the main features and the behaviour of the RAIS system. Section three describes how
this system has been designed and implemented by using some well-known
technologies and software tools. Finally, section four gives some concluding remarks
and presents our future research directions.

2 RAIS System

RAIS (Remote Assistant for Information Sharing) is a peer-to-peer and multi-agent
system composed of different agent platforms connected through the internet. Each
agent platform acts as a “peer” of the system and is based on three agents: a personal
assistant, an information finder and a directory facilitator. A further agent, called
personal proxy assistant (PPA), allows a user to remotely access her/his agent
platform. Figure 1 shows the RAIS multi-agent system architecture.

DF
IF

Internet PA

DF

PA

DF

IF

PA

DF
PPA

PA

IF

IF

Fig. 1. The RAIS multi-agent system

A Personal Assistant (PA) is an agent that allows the interaction between the RAIS
system and the user. This agent receives the user’s queries, forwards them to the
available information finders and presents the results to the user. Moreover, a PA
allows the user to subscribe her/him to be notified about new documents and
information on some topics in which she/he is interested. Finally, a PA maintains a

204 M. Mari et al.

profile of its user preferences. In our system, the management of user profiles is
performed in two different phases: an initialization phase and an updating phase.

Profiles are represented by vectors of weighted terms whose value are related to the
rate expressed by the user. The user, in fact, can rate the quality of the information
coming from other users for each search keyword (the utility of this profile will be
clear after the presentation of the system behaviour).

An Information Finder (IF) is an agent that searches information on the repository
contained into the computer where it lives and provides this information both to its
user and to other users of the RAIS system. An IF receives users’ queries, finds
appropriate results and filter them on the basis of its user’s policies (e.g.: results from
non-public folders are not sent to other users). Furthermore, an IF monitors the
changes in the local repository and pushes the new information to a PA when such
information matches the interests subscribed by that PA.

A Personal Proxy Assistant (PPA) is an agent that represents a point of access to
the system for users that are not working on their own personal computer. A PPA is
intended to run on a pluggable device (e.g., a USB key) on which the PPA agent is
stored together with the RAIS binary and configuration files. Therefore, when the
user starts the RAIS system from the pluggable device, her/his PPA connects to the
user’s PA and provides the user with all the functionalities of her/his PA. For security
reasons, only a PA can create the corresponding PPA and can generate the
authentication key that is shared with the PPA to support their communication.
Therefore, for a successful connection, the PPA has to send the authentication key,
and then the user must provide his username and password.

Finally, the Directory Facilitator (DF) is responsible to register the agent platform
in the RAIS network. The DF is also responsible to inform the agents of its platform
about the address of the agents that live in the other platforms available on the RAIS
network (e.g., a PA can ask about the address of the active IF agents).

2.1 Searching and Pushing Information

In order to understand the system behaviour, we can present two practical scenarios.
In the first, a user asks her/his PA to search for some information, while in the second
the user asks to subscribe her/his interest about a topic. In both cases the system
provides the user with a set of related information.

In the first scenario, the system activity can be divided in four steps: i) search, ii)
result filtering, iii) results sending and presentation, and iv) retrieval.

Search: The user requests a search to her/his PA indicating a set of keywords and
the maximum number of results. The PA asks the DF for the addresses of available IF
agents and sends the keywords to such agents. The information finders apply the
search to their repositories only if the querying user has the access to at least a part of
the information stored into its repositories.

Results filtering: Each IF filters the searching results on the basis of the querying
user access permissions.

Results sending and presentation: Each IF sends the filtered list of results to the
querying PA. The PA orders the various results as soon as it receives them, omitting
duplicate results and presents them to its user.

 Enhancing Information Sharing Through Agents 205

Retrieval: After the examination of the results list, the user can ask her/his PA for
retrieving the information corresponding to an element of the list. Therefore, the PA
forwards the request to the appropriate IF, waits for its answer and presents the
information to the user.

In the second scenario, the system activity can be divided in five steps: i)
subscription, ii) monitoring and results filtering, iii) results sending and user
notification, iv) results presentation and v) retrieval.

Subscription: The user requests a subscription to her/his PA indicating a set of
keywords describing the topic in which she/he is interested. The PA asks the DF for
the addresses of available IF agents and sends the keywords to such agents. Each IF
registers the subscription if the querying user has the access to at least a part of the
information stored into its repository.

Monitoring and result filtering: Each IF periodically checks if there are some new
information satisfying its subscriptions. If it happens, the IF filters its searching
results on the basis of the access permissions of the querying user.

Results sending and user notification: Each IF sends the filtered list of results to
the querying PA. The PA orders the various results as soon as it receives them,
omitting duplicate results and stores them in its memory. Moreover, it notifies its user
about the new available information sending her/him an email.

Results presentation: The first time the user logs into the RAIS system, the PA
presents her/him the new results.

Retrieval: In the same way of the previous search scenario, the user can retrieve
some of the information indicated in the list of the results.

As introduced above, a PA receives from the user a constraint on the number of
results to provide (Nr) and uses it to limit the results asked to each IF agent. The
number of results that each IF agent can send is neither Nr nor Nr divided to the
number of IF agents (Nr/Nif), but a number (between Nr and Nr/Nif) for which
the PA is quite sure to provide at least Nr results to its user without the risk of
receiving a burden of unnecessary data. Moreover, each IF, before sending the list of
results, creates a digest1 of each result and sends them together with the list.
Therefore, the PA causes the digests to omit duplicate results coming from different
IF agents.

After the reception of results and the filtering of duplications, the PA has the duty
of selecting Nr results to send to its user (if they are more than Nr) and order them.
Of course, each IF orders the results before sending them to the PA, but the PA has
not the information on how to order results from different IF agents. Therefore, the
PA uses two more simpler solution on the basis of its user request: i) the results are
fairly divided among the different sources of information, ii) the results are divided
among the different sources of information on the basis of the user preferences. User
preferences are represented by triples of the form <source, keyword, rate>
where: source indicates an IF, keyword a term used for searching information,
and rate a number representing the quality of information (related to the keyword)
coming from that IF. Each time a user gets a result, she/he can give a rate to the

1 A digest is a compact representation given in the form of a single string of digits that has the

property to be different for data that are different [12]. A digest is usually used to compare
remote files without the need of moving the files.

206 M. Mari et al.

quality of the result and, as consequence, the PA can update her/his preferences in the
user profile that the PA maintains.

2.2 Security

The information stored into the different repositories of a RAIS network is not
accessible to all the users of the system in the same way because it’s important to
avoid the access to private documents and personal files. The RAIS system takes care
of users’ privacy allowing the access to the information on the basis of the identity,
the roles and the attributes of the querying user.

Of course, different levels of privacy can be assigned to the information stored into
the same repository. Various models exist to deal with the authorization problem [7].

The best known is the Discretionary Access Control (DAC) model. It is the
traditional model, based on Access Control Lists. In this model, each user is
associated with a list of granted access rights. On the basis of this list of permissions,
he will be allowed or denied access to a particular resource. A resource administrator
is responsible for editing the Access Control Lists.

Another popular model is the Mandatory Access Control (MAC), used to
implement Multilevel Secure (MLS) systems. In these systems, each resource is
labeled according to a security classification. Correspondingly, each principal is
assigned a clearance, which is associated with a classification list. This list contains
all the types of resources the principal should be allowed to access, depending on their
classification. The multilevel security is particularly popular in the military field, and
in inherently hierarchical organizations.

Another interesting model is the Role Based Access Control (RBAC) model. This
model is centered around a set of roles. Each role can be granted a set of permissions,
and each user can be assigned to one or more roles. A many to many relationship
binds principals and the roles they’re assigned to. In the same way, a many to many
relationship binds permissions and the roles they’re granted to, thus creating a level of
indirection between a principal and his access rights. This also leads to a better
separation of duties (between the assignment of principals to roles and the definition
of role permissions), to implement privilege inheritance schemes among superior and

The information stored into the different repositories of a RAIS network is not
accessible to all the users of the system in the same way. In fact, it’s important to
avoid the access to private documents and personal files, but also to files reserved to a
restricted group of users (e.g.: the participants of a project). The RAIS system takes
care of users’ privacy allowing the access to the information on the basis of the
identity, the roles and the attributes of the querying user defined into a local
knowledge base of trusted users. In this case, it is the user that defines who and in
which way can access to her/his information, but the user can also allow the access to
unknown users enabling a certificate based delegation built on a reputation network of
the users registered into the RAIS community. For instance, if the user enables the
delegation and grants to the user the access to its repository with capabilities
and grants to the user the access to its repository with the same capabilities
then can access ’s repository with the same capabilities of . The trust
delegation can be useful when the system is used by open and distributed
communities, e.g. to share documents among the members of an Open Source project.

Ui
Uj C0

Uj Uk C0 ,
Uk Ui Uj

 Enhancing Information Sharing Through Agents 207

subordinate roles and to permit temporary delegations of some of the assigned roles
towards other principals.

Following the RBAC model, each resource manager of our system (i.e. each node in
the peer-to-peer network) has to deal with three main concepts: principals (i.e.
authenticable entities which act as users of resources and services), permissions (i.e.
rights to access resources or use services) and roles. The fundamental principle here is
that each node is in charge of defining its own roles, and of assigning principals to them.

In RAIS, authentication and authorization are performed on the basis of the local
knowledge base of trusted users, though they can be delegated to external entities
through an explicit, certificate based, delegation [8]. In this sense, the system
completely adheres the principles of trust management. The definition of roles and
attributes is also made in a local namespace, and the whole system is, in this regard,
completely distributed. Local names are distinguished by prefixing them with the
principal defining them, i.e. an hash of the public key associated with the local
runtime. Links among different local namespace, again, can be explicitly defined by
issuing appropriate certificates.

In this sense, local names are the distributed counterpart of roles in Role Based
Access Control frameworks [9]. Like roles, local names can be used as a level of
indirection between principals and permissions. Both a local name and role represent
at the same time a set of principals, as well as a set of permissions granted to those
principals. But, while roles are usually defined in a centralized fashion by a system
administrator, local names, instead, are fully decentralized. This way, they better scale
to internet-wide, peer-to-peer applications, without loosening in any way the
principles of trust management.

In RAIS, the user can not only provide the permission to access his own files, but
by defining appropriate XACML policies [10] he can also assign the permission to
upload a new version of one or more existing files. In this case the PA informs his/her
user about the updated files the first time he/she logs in. This functionality can be
useful for the members of a workgroup involved in common projects or activities.
Basic versioning capabilities are planned to be added to the Distribute Desktop Search
system in the near future.

2.3 Mobile User Support

People travelling for work may often be in need of access from a remote system their
own computer. In this situation, a solution could be to install a VNC server on the
desktop computer and to find a system with a VNC client while travelling. This
solution has the advantage that the user gains the complete control on his remote PC,
but it has also two main drawbacks: it’s not easy to find computers with VNC clients
available and the VNC connects only to one computer, not to the whole set of files
and information of a workgroup.

For users that don’t require a complete control over a remote computer, but need to
search and access a distributed set of documents, we have included in our system a
remote search feature. The user can ask his/her PA to create a PPA on a pluggable
device, e.g., an USB key or a removable hard disk. The PA copies on the device the
RAIS run-time, the RPA and the authentication key shared by the PPA and the PA

208 M. Mari et al.

itself. When the user inserts the pluggable device on another computer, he can
immediately launch his PPA and connect to its corresponding PA.

Therefore, the way of using the RAIS system is analogous to the situation in which
the user works on her/his own computer, except for the interactions between the RPA
and the PA, that, however, are transparent to the user. In fact, at the initialization, the
PPA sends an authentication key to the PA. If the key matches those of the PA, the
user can provide his/her username and password and enter the system (step that must
be done by the user when she/he uses the RAIS system from her/his own computer
too). After these two steps, the PPA acts as a simple proxy of the remote PA.

3 RAIS Development Components

The RAIS system has been designed and implemented taking advantage of agent,
peer-to-peer, information retrieval and security management technologies and, in
particular, of three main software components: JADE [11], JXTA [12][13] and
Google Desktop Search [2].

RAIS agent platforms have been realized by using JADE: JADE (Java Agent
Development Framework) [11] is probably the most known agent development
environment enabling the integration of agents and both knowledge and Internet-
oriented technologies. JADE allows to build agent systems for the management of
networked information resources in compliance with the FIPA specification [14].
JADE provides a middleware for the development and execution of agent-based
applications which can seamless work and interoperate both in wired and wireless
environment. Moreover, JADE supports the development of multi-agent systems
through the predefined programmable and extensible agent model and a set of
management and testing tools. Currently, JADE is considered the reference
implementation of the FIPA specifications and is one of the most used and promising
agent development frameworks. In fact, is available under an LPGL open source
license, it has a large user group, involving more than two thousands active members,
it has been used to realize real systems in different application sectors, and its future
development is guided by a governing board involving some important industrial
companies.

The JADE development environment does not provide any support for the
realization of real peer-to-peer systems because it only provides the possibility of
federating different agent platforms through a hierarchical organization of the
platform directory facilitators on the basis of a priori knowledge of the agent
platforms addresses. Therefore, we extended the JADE directory facilitator to realize
real peer-to-peer agent platforms networks thanks to the JXTA technology [13] and
thanks to two preliminary FIPA specifications for the Agent Discovery Service [15]
and for the JXTA Discovery Middleware [16].

JXTA technology [12][13] is a set of open, general-purpose protocols that allow
any connected device on the network (from cell phones to laptops and servers) to
communicate and collaborate in a peer-to-peer fashion. The project was originally
started by Sun Microsystems, but its development was kept open from the very
beginning. JXTA comprises six protocols allowing the discovery, organization,
monitoring and communication between peers. These protocols are all implemented

 Enhancing Information Sharing Through Agents 209

Fig. 2. RAIS search graphical user interface

on the basis of an underlying messaging layer, which binds the JXTA protocols to
different network transports.

FIPA has acknowledged the growing importance of the JXTA protocols, and it has
released some specifications for the interoperability of FIPA platforms connected to
peer-to-peer networks. In particular, in [16] a Generic Discovery Service (GDS) is
described, to discover agents and services deployed on FIPA platforms working
together in a peer-to-peer network. RAIS integrates a JXTA-based Agent Discovery
Service (ADS), which has been developed in the respect of relevant FIPA
specifications to implement a GDS. This way, each RAIS platform connects to the
Agent Peer Group, as well as to other system-specific peer groups. The Generic
Discovery Protocol is finally used to advertise and discover df-agent-descriptions,
wrapped in Generic Discovery Advertisements, in order to implement a DF service,
which in the background is spanned over a whole peer group.

Different techniques and software tools can be used for searching information in a
local repository. If the information is stored in form of files, the Google desktop
search system [1] can be considered a suitable solution because Google provides an
SDK for developing plug-ins based on its desktop search system. The API that comes
with the SDK uses COM objects, so it’s not directly available for JAVA development,
but a bridge between the API and JAVA is provided by the Open Source project
GDAPI [17]. Google desktop search indexes the content of the files of a local drive in

210 M. Mari et al.

a way similar to the Google Web crawler, providing a searching engine fast, effective
and with the support for a wide range of file formats.

As introduced before, authentication and authorization are performed locally, based
on local knowledge and local trust relationships. But local authorization decisions can
be extended to external entities, also, through an explicit, certificate based, delegation.

In fact, the theory of RAIS delegation certificates is founded on SPKI/SDSI
specifications [8], though the certificate encoding is different. As in SPKI, principals
are identified by their public keys, or by a cryptographic hash of their public keys.
Instead of s-expressions, RAIS uses XML signed documents, in the form of SAML
assertions [18], to convey identity, role and property assignments. As in SPKI,
delegation is made possible if the delegating principal issues a certificate whose
subject is a name defined by another, trusted, principal. The latter can successively
issue other certificates to assign other principals (public keys) to its local name. In this
sense, local names act as distributed roles [9].

Finally, the extraction of a digest for each search result is required to avoid the
presentation of duplicate results to the user. This feature is provided by a Java
implementation of the hash functions MD5 or SHA-1 [19].

4 Conclusion

In this paper, we presented a peer-to-peer multi-agent system, called RAIS (Remote
Assistant for Information Sharing), supporting the sharing of information among a
community of users connected through the internet.

RAIS is implemented on the top of well known technologies and software tools for
realizing: i) The agent platforms, i.e., JADE, ii) The peer-to-peer infrastructure, i.e.,
JXTA, iii) The searching of information into the local repository, i.e., Google Desktop
Search, and iv) The authentication and authorization infrastructure, i.e., SPKI/SDSI
specifications and the SAML assertions.

In our opinion, RAIS can be considered something more than a research prototype
that couples the features of Web searching engines and of peer-to-peer systems for the
sharing of information. Firstly, RAIS improves the security rules provided to check
the access of the users to the information. Secondly, it offers a similar search power of
Web search engines, but avoids the burden of publishing the information on the Web
and guaranties a controlled and dynamic access to the information. Finally, an agent
based implementation of the system makes quite straightforward but also effective the
realization of three main features of the system: i) The filtering of the information
coming from different users on the basis of the previous experience of the local user,
ii) The pushing of the new information that can be of possible interest for a user, and
iii) The delegation of authorization on the basis of a network of reputation built by the
agents of the system on the community of its users.

A first prototype of the RAIS system has been developed, experimented and
evaluated. The prototype includes all basic features; a graphical user interface
simplifies the interaction between the user and the system (see figure 2). Practical
tests on the first prototype were done installing the system in different labs and offices
of our department asking some students and colleagues to use it for sharing and
exchanging information. In a subsequent phase, we tested the system setting some
computers of a Lab with different access policies and distributing information on their

 Enhancing Information Sharing Through Agents 211

repositories in order to have different copies of the same information on different
computers. The tests covered with success all system features: basic research, user
defined policies, results filtering, duplicate results management and remote search
through a proxy personal agent. The tests results were fully satisfactory and, in
particular, the involved users were interested in continuing its use for supporting their
work activities. The successful experimentation encouraged us in the further
development of the system and we are currently working on studying the best way for
introducing new types of information that can be managed (e.g., information stored
into databases) and for including new techniques for the searching of such
information (e.g., semantic Web techniques).

References

1. Google Desktop SDK, http://desktop.google.com/developer.html
2. Google Desktop Search, http://desktop.google.com
3. James, R., Chen, S.R., Wolfe, S.D.: A distributed multi-agent system for collaborative

information management and sharing. In: Proc. of the 9th int. Conf. on Information and
Knowledge Management, McLean, VA, pp. 382–388 (2000)

4. Babaoglu, O., Meling, H., Montresor, A.: A Framework for the Development of Agent-
Based Peer-to-Peer Systems. In: ICDCS 2002. Proc. of the 22nd Int. Conf. on Distributed
Computing Systems, Vienna, Austria, pp. 15–22 (2002)

5. Carter, J., Bitting, E., Ghorbani, A.: Reputation Formalization Within Information Sharing
Multiagent Architectures. Computational Intelligence 2(5), 45–64 (2002)

6. Zhang, H., Croft, W.B., Levine, B., Lesser, V.: A Multi-agent Approach for Peer-to-Peer-
based Information Retrieval Systems. In: Proc. of the Third Int. Joint Conf. on Autono-
mous Agents and Multiagent Systems, New York, pp. 456–463 (2004)

7. Sandhu, R., Samarati, P.: Access controls, principles and practice. IEEE Communica-
tions 32(9), 40–48 (1994)

8. Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B., Ylonen, T.: SPKI: Certificate
Theory. RFC 2693 (1999)

9. Li, N., Mitchell, J.M. RT: A Role-based Trust-management Framework. In: Proc. of the
Third DARPA Information Survivability Conference and Exposition (DISCEX III), pp.
201-212, Washington, D.C (2003)

10. XACML - OASIS eXtensible Access Control Markup Language (XACML) TC, http://
www.oasis-open.org/committees/xacml/

11. JADE software development framework, http://jade.tilab.com
12. Gong, L.: JXTA: A network programming environment. IEEE Internet Computing 5,

88–95 (2001)
13. JXTA technology, http://www.jxta.org
14. FIPA Specifications, http://www.fipa.org
15. FIPA Agent Discovery Service Specification, (2003),

16. FIPA JXTA Discovery Middleware Specification (2003),
 http://www.fipa.org/specs/fipa00096/PC00096A.pdf

17. GDAPI, Google Desktop Search Java API, http://gdapi.sourceforge.net

19. Rivest, R.L.: The MD5 Message Digest Algorithm. Internet RFC 1321 (1992)
18. SAML - Security Assertion Markup Language, http://xml.coverpages.org/saml.html

 http://www.fipa.org/specs/fipa00095/PC00095.pdf

ToothAgent: A Multi-agent System for Virtual

Communities Support

Volha Bryl1, Paolo Giorgini1, and Stefano Fante2

1 University of Trento, DIT,
via Sommarive 14, Povo (TN) 38050, Italy

{volha.bryl,paolo.giorgini}@dit.unitn.it
2 ArsLogica Lab, Mezzolombardo (TN), Italy

stefano.fante@arslogica.it

Abstract. People tend to form social networks within geographical
areas. This can be explained by the fact that generally geographical
localities correspond to common interests (e.g. students located in a uni-
versity could be interested to buy or sell textbooks adopted for a specific
course, to share notes, or just to meet together to play basketball). Cel-
lular phones and more in general mobile devices are currently widely
used and represent a big opportunity to support social communities. In
this paper, we present a general architecture for multi-agent systems
accessible via mobile devices (cellular phones and PDAs), where Blue-
tooth technology has been adopted to reflect users locality. We illustrate
ToothAgent, an implemented prototype of the proposed architecture,
and discuss the opportunities offered by the system.

1 Introduction

Being widespread and ubiquitous, cellular phones are recently used not only
as means of traditional communication. They are also supposed to satisfy the
information needs of their users, e.g. to support information search and filtering
or electronic data exchange [15,1,17,12]. Users equipped with mobile devices,
such as cellular phones or PDAs, can form so called mobile virtual communities
[16], which makes possible the interaction and the information exchange between
their geographically distributed members. Such communities are inherently open,
new users can join and existing ones can leave anytime.

A number of multi-agent applications to mobile device environments have
been proposed in literature. [12] presents a multi-agent system named KORE
where a personal electronic museum guide provides to visitors (with Java-enabled
mobile devices) information about artistic objects they are currently looking at.
Information is filtered and adapted to the user profile. Bluetooth technology [2] is
used to detect the user position. Bluetooth is a cheap and a widely used wireless
communication technology able to connect Bluetooth-enabled devices located
in a range of 100 meters. [17] proposes MobiAgent, an agent-based framework
that allows users to access various types of services (from web search to remote
applications control) directly from their cellular phones or PDAs. Once the user

M. Kolp et al. (Eds.): AOIS 2006, LNAI 4898, pp. 212–230, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

ToothAgent: A Multi-agent System for Virtual Communities Support 213

sends a request for a specific service, an agent starts working on her behalf on
a centralized server. The user can disconnect from the network and the agent
will continue to work for her. When the request has been processed, the user is
informed via Short Message Service and she can decide to reconnect the network
and download the results. MIA information system [1] is another example that
provides personalized and localized information to its users via mobile devices.

What is still missing in these systems is the interaction between the members
of the virtual community. Just few proposals in literature introduce domain-
specific environments where interacting agents act on the behalf of their users.
For instance, [13] describes a context-aware multi-agent system for agenda man-
agement where scheduling agents can execute on PCs or PDAs and assist their
users in building the meeting agenda by negotiating with the other agents.
ADOMO [14] is an agent-based system where agents running on mobile devices
sell the space on the device screen to commercial agents for their advertisements.
Agents on behalf of their users negotiate and establish contracts with neighbors
via Bluetooth.

There exist a number of multi-agent platforms that can be used on mobile
devices. However, taking into account the limited computational and memory
resources, it could be very problematic to run a multi-agent platform on such
mobile devices as cellular phones. A possible solution is either to avoid running
multi-agent platform on mobile devices, as for example in [14], or to use portal
multi-agent platforms [15] where agents are executed not on the device itself but
on the external host.

In this paper we present a general architecture based on this last option. The
architecture proposes independent servers where multi-agent platforms can be
installed and where agents can act on behalf of their users. Each server proposes
one or more specific services related to the geographical area in which it is located
(e.g. a server inside the university could offer the service of selling and buying
textbooks, renting an apartment, etc.), and users can contact their personal
agents using their Bluetooth-enabled mobile phones or PDAs.

The main advantage of the proposed framework with respect to the above
described architectures is that the system is domain independent (it does not
depend on the specific services offered by the servers) and independent from
the multi-agent technology adopted (we can use different technologies on each
server). The use of multi-agent approach is crucial for the framework, as it al-
lows designing and implementing a virtual community of autonomous and proac-
tive representatives of users on a platform, i.e. user personal agents. Moreover,
platforms on a server are based on the Implicit Culture framework [11], which
specifically aims at improving the agent performance.

The paper is organized as follows. Section 2 describes a motivating example
for our system. The general architecture of the system is introduced in Section 3,
while Section 4 provides some architectural details and describes ToothAgent,
the implemented prototype. It also overviews the Andiamo project, an industrial
extension of ToothAgent for the Rideshare scenario. Section 5 concludes the
paper and provides some future work directions.

214 V. Bryl, P. Giorgini, and S. Fante

2 Motivating Example

Let us consider three places in a town: the university, the railway station and a
bar. People spending some time at one of these places may have some common
interests and needs. For instance, students at the university might want to buy
or to sell secondhand textbooks, find a roommate or form study groups. People
at the bar could be interested in the latest sport news (especially in Italian bars),
or they could just be looking for someone to chat with. Passengers waiting at the
railway station may want to know some details about the trip they are going to
have — what cities their train goes through, or what the weather is like at the
destination point. They may also want to find someone with common interests
to chat with during the trip.

Let us suppose also that people cannot or do not want to spend their time
on examining announcements on the bulletin boards, questioning people around
them, or searching for the information office. They would prefer to ask their
mobile phones and wait for the list of available proposals.

To support interests and needs of such groups of co-localized users, a server
is placed at each of the three meeting points. Servers can provide a certain
number of services to people equipped with mobile phones or PDAs (hereinafter
referred as users). A user can have access to the services when she is close enough
(depending on her Bluetooth device) to one of the three servers — at the bar,
in the waiting room of the station, or at the main hall of the university.

Let us suppose that among the available services we have the following ones.
At the university users can buy/sell their secondhand books and search for room-
mates. At the bar, users can access a sport news service or search for “interesting”
people. Finally, at the railway station, users can receive information about their
trips (including touristic information).

User interaction is often essential for the satisfaction of their needs. To sell a
secondhand textbook, one should find a buyer and agree on the price. To find
someone in the bar to chat with, one should look for the person with similar
interests or preferences. Each server recreates the group of co-localized human
users in a virtual community of personal agents (Figure 1) able to interact with
one another. Users formulate their requests and forward them to their personal
agents.

Personal agents interact with the other available agents (the interaction might
include negotiation as in the case of selling or buying books), and produce results
that will be sent back to the users. The main idea is to have a distributed
system composed of a number of open virtual communities that evolve and act
autonomously on the behalf of human communities.

3 System Architecture

In this section we describe the general architecture of the system. We start from
the requirements and then we illustrate the various sub-components and their
interaction.

ToothAgent: A Multi-agent System for Virtual Communities Support 215

Fig. 1. Users, servers, and virtual communities of personal agents

3.1 System Requirements

We can summarize the requirements of the whole system in the following objec-
tives.

– The system should allow the user to express her interests and choose the
services she wants to access. It means that the user should be able to search
for available servers and services by location, category, keywords, etc. The
user should be provided with an interface to select services she is interested
in and to customize them, i.e. to specify parameters of the requests to these
services (e.g. book title and price for “buy/sell books” service). The system
should allow the user view and edit customized requests, and transfer the
list of requests to a mobile device.

– The system should provide access to the requested services when a mobile
device and an appropriate server are co-localized (i.e. the Bluetooth con-
nection is feasible). This means the system should be able to support the
search for servers (and corresponding services) in the neighborhood of a mo-
bile device, and the verification of the mobile device by a server. Then user’s
requests should be transferred to the server, where it should be possible
to find correspondence between a user and her personal agent. The system
should also support interaction among personal agents, store the results and
let users access these results from their mobile devices.

– The system should allow its user to retrieve pending results. Results should
be accessible both in case a user is still in the Bluetooth range of a server and
when she is out of the range. In the second case the system should allow a user
to access pending results from her mobile device by connecting to any server
of the system, or from her PC via a dedicated interface. To do this, the system
should support interaction between different servers and between a server and

216 V. Bryl, P. Giorgini, and S. Fante

Fig. 2. Interaction of system components

a PC. The system should keep track of all servers visited by mobile devices and
transfer these information to a PC or to a connected server.

3.2 System Components

The architecture of the system includes four main types of components: mobile
device, PC, server and services database.

The PC component provides an interface for the user registration, retrieving
and choosing available services, and building requests for the chosen services.
Also the pending results can be retrieved via PC. The mobile device is used to
send the user’s requests to the servers and to get back the results. Each server
within the system provides a list of predefined services. A server runs a multi-
agent platform with personal agents representing single users, a database where
results are archived, and an interface responsible for establishing connections
with mobile devices and PCs, and for redirecting the users’ requests to the
corresponding personal agents. The central services database, accessible via web,
contains information about all the servers and their properties, such as name,
location, etc. The database also provides a description of available services on
each server, and stores the information about users registered to the system.

Figure 2 illustrates the general architecture of the system and the interac-
tion among its components. Connection between a mobile device and a PC,
and between a mobile device and a server is established via Bluetooth wireless
communication technology.

3.3 Getting Access to the Services

In the following we describe how the process of getting access to the services is
organized (Figure 3).

The software running on a PC allows a user to search and discover servers and
services, registered to the services database (steps 1–3). A user selects one or
more services and provides information (i.e. requests) related to the use of such
services (step 4). For example, using the service “Buy/sell secondhand books”, a

ToothAgent: A Multi-agent System for Virtual Communities Support 217

Fig. 3. Getting access to services

user could request to “Sell the copy of Thinking in Java by Bruce Eckel, printed
in 1995, for the price not less than 20 euros”. All the user’s requests are stored
in a configuration file, which is downloaded onto a mobile device via Bluetooth
(step 5).

When a user with her mobile device approaches one of the servers, software on
the device establishes a connection with the server (step 6) and sends requests
related to the available services (step 7). Requests are built on the base of the
configuration file of the mobile device. In other words, the mobile device checks
in the configuration file if the user is interested in the services provided by the
server and then builds and sends the requests to the server. The requests are
processed on the server, and the results are sent back to the user (steps 8–12)
The mobile device stores server address to keep track of the contacted servers.
It stores the address even if there are no relevant services on the server. This
allows the user to check later the list of all visited servers and associated services,
and decide to update her preferences by including new servers/services in the
configuration file.

3.4 Retrieving Pending Results

We describe now how the process of retrieving the pending results is organized
(Figure 4).

A user has basically two options to get back the results of her requests. The
first one is to receive them directly on her mobile device. However, this is not
always possible. A user could leave the Bluetooth area or her mobile device may

218 V. Bryl, P. Giorgini, and S. Fante

Fig. 4. Retrieving pending results from mobile device (A) and from PC (B)

not have enough memory or computational power to manage the answers (e.g. in
the case the answers are a number of big files). Thus the second option is to get
back the results later when the connection with the server they were requested
from is closed.

Pending results can be retrieved both from a mobile device (steps A.x) and
from a PC (steps B.x). In the first case a mobile device has to be configured
to get the pending results and has to be in the Bluetooth range of some server.
For example, if a student is going to spend a whole hour in the main hall of the
university waiting for the next lecture, she will have enough time to download
the results of her requests sent in the morning to the railway station server
(where she bought her train ticket before going to the university). She switches
on the option “get pending results” on her mobile phone (step A1), and waits
for results. The mobile device sends to the university server the list of addresses
of the servers its user has visited (step A2). The server establishes a connection
with each server in the list, and sends the information that identifies the mobile
device (e.g. its Bluetooth address) as a request for the pending results (step A3).
The obtained information is sent back to the mobile device (steps A5–A6).

In the second case a user receives pending results through a PC. The student
goes back home and runs the PC software that collects all the pending results
obtained from the visited servers (steps B3–B5), after the list of the visited servers
and their addresses is transferred from the mobile device to the PC (step B1).

ToothAgent: A Multi-agent System for Virtual Communities Support 219

Fig. 5. General architecture of SICS

3.5 Agent Platform

Each server runs a multi-agent platform, where agents correspond to mobile
devices and receive and process requests obtained from users. There is a one-
to-one correspondence between agents and mobile devices (users). An agent is
identified by a unique Bluetooth address of the corresponding mobile device.
The same device can have many personal agents within different platforms on
different servers.

When a server receives the request from a mobile device, it checks if the per-
sonal agent of this device exists within the platform. If not, a new personal agent
is created. Each personal agent communicates and interacts with other agents
in order to find “partners” which will satisfy its request. Interaction protocols
are domain (services) dependent.

Multi-agent platforms on a server are based on the Implicit Culture [11] frame-
work. In short, Implicit Culture allows new members of a community to behave
in accordance with the culture of the community. For example, a new student
may not know which textbooks can be helpful for the Programming Languages
course and starts to search for Textbook on Programming Languages. The idea of
the Implicit Culture framework is that the system suggests the student the items
that are usually used by the other members of the community. So for example,
the system could suggest the student to search for the book Thinking in Java.

Multi-agent systems with the Implicit Culture support are used for example
for searching the web. See [10] for the description of Implicit, an agent-based
recommendation system for web search, which improves the search for informa-
tion for a community of users with similar interests. When a user submits a
query, Implicit looks for the relevant information, exploiting observations of the
behavior of other users when they have issued similar queries.

To follow the Implicit Culture concept an agent on the platform should contain
System for Implicit Culture Support (SICS) [11]. SICS consists of three basic
components (their interaction is illustrated in Figure 5):
– Observer, which stores in a database the information about user actions

(observations).
– Inductive module, which analyzes the obtained observations and induces be-

havioral patterns of the community using Data Mining techniques.

220 V. Bryl, P. Giorgini, and S. Fante

– Composer, which produces suggestions on the base of the information from
the Observer and Inductive module.

More details about the Implicit Culture framework are available at [3].

4 Implementation Issues

In this section we present the details of ToothAgent, an implemented prototype
of the proposed architecture. Basically, the system is a first implementation of
the architecture presented in Section 3 and focuses on a number of servers spread
around the university campus (faculties, libraries, and departments). Each server
offers only the service for selling and buying books.

We tested the system using Nokia 6260/6630/9500 and Sony Ericsson P910
cellular phones and PC/Server either equipped with Tecom or Billionton Blue-
tooth adapters, or having an integrated BT module. Bluetooth communication
has been implemented using Blue Cove [4] which is an open source implementa-
tion of the JSR-82 Bluetooth API for Java.

4.1 Online Registration and Service Selection

To start working with the system, a user has to register. To do this she should fill
the online registration form where she needs to put her personal information such
as name, birth date, e-mail, Bluetooth address and phone number of her mobile
device, and password. Registration, basically, allows the system to identify a user
and a mobile device she is going to use. Password is used to access the information
about servers and related services, and to upload/update user information (e.g.
a user can decide to use different mobile device or just to change her data
such as telephone number or e-mail address). Also a password is needed to
access servers and their services via mobile device (for this purpose a user has
to input a password while configuring an application on her mobile device). All
the information about a user is stored in the services database. Registered users
obtain the rights to download the software for PC and mobile device components
(which are two jar files), and the XML file containing information about all
available servers with corresponding services.

After the registration (or login), a user can start selecting services to use.
Using the Java GUI interface shown in Figure 6, she can explore all the available
services using filtering criteria such as server location (e.g. we can have servers
located in different cities or in different places in the same city), type or category
of the service (e.g. buy/sell books, exchange course notes, or meet people), and
keywords (e.g. books, course, etc.). The list of the selected services is managed
by the PC component that allows its user to customize these services with the
specific requests (e.g. title of the book to buy or to sell, the desired price, minimal
or maximal price).

The list of customized services (with related servers addresses) is stored in
an XML configuration file, which is uploaded via Bluetooth in the mobile de-
vice. Figure 7 shows an example for the “sell/buy books” service. Note that

ToothAgent: A Multi-agent System for Virtual Communities Support 221

Fig. 6. Request input form

Fig. 7. Configuration file

222 V. Bryl, P. Giorgini, and S. Fante

Fig. 8. ToothAgent application running on the mobile phone

the file format does not depend on what services it describes, i.e. it is domain
independent.

4.2 Accessing the Services

To access the services, a user needs to run the Bluetooth application on her
mobile device (Figure 8). The application is written in Java and uses JSR-82 [5],
which is Bluetooth API for Java. The application starts a continuous search for
Bluetooth-enabled devices in the neighborhood, and whenever it finds a server
with the services specified in the configuration file, the mobile device sends the
user requests to this server. Figure 9 shows the protocol we use for the interaction
among the different components.

A specific communication module on a server is responsible for managing the
interaction with a mobile device. It receives the Bluetooth address and the en-
crypted password from a mobile device (steps 1 and 3) and checks whether in the
platform running on the server a personal agent assigned to that mobile device
already exists (step 4), the Bluetooth address is used to map a mobile device
with its personal agent. If there is no personal agent for a user, the communi-
cation module connects to the central services database and verify whether this
user is registered to the system (steps 5–6) by matching the Bluetooth address
of her device and the password. Only in case of a positive answer, it creates a
new agent and assigns it to the mobile device user (step 8). Then, the mobile
device sends the configuration file to the communication module (step 9), which
forwards all the user requests to the personal agent (step 10).

Now, a personal agent starts interacting with other agents on the platform
trying to satisfy all the user requests (step 12). In our example a personal agent
receives one or more requests for buying and/or selling books (with specified
title, desired price, maximum and minimum prices, etc.). If the agent reaches
an agreement with another agent about their users requests it stores the results
locally in the server database (step 13). Later the results could be sent back to

ToothAgent: A Multi-agent System for Virtual Communities Support 223

Fig. 9. Getting access to services

the user (steps 14–18) or left on the server, depending on the retrieval modality
that the user has defined in the configuration file.

4.3 Results Retrieval

Whenever a new connection between a server and a mobile device is established,
the communication module sends to the mobile device the IP-address of the
server (step 2 on Figure 9). The mobile device stores the IP addresses of all the
visited servers in an XML file, that is used later to retrieve all pending results.
The format of the results produced by a personal agent is shown in Figure 10.
It may contain the request identifier, contacts (e.g. phone number) of the user
interested to buy or sell the book, the actual agreed price, etc.

As discussed in Section 3, a user has three different modalities to retrieve
results: get the results immediately, get pending results using her mobile device,
and get pending results using a PC. Each of these modalities has to be defined
in advance by a user and can be changed at runtime by means of the mobile
device application.

Choosing the first option, a user can receive the results immediately in her
mobile device. Of course, she can receive the results if and only if she is still
at a Bluetooth distance from a server. The communication module checks the
availability of the mobile device and sends to it the results stored in the internal
server database by the corresponding personal agent (see Figure 9, steps 14–18).

224 V. Bryl, P. Giorgini, and S. Fante

Fig. 10. List of responses

Figure 11 shows the interaction protocol of retrieving pending results via mo-
bile device. Consider for example a situation in which a user is near to the server
of the central library. After the connection has been established, the mobile de-
vice sends the list of IP-addresses of all previously visited servers (e.g. faculty
servers, departments servers, etc.) to the library server (step 2). The commu-
nication module of the server sends then the Bluetooth address of the mobile
device to all listed servers (step 3). In turn, the communication module of each
server extracts from the internal database all the stored results related to that
user and sends them back to the requester server (steps 4–7). All the results are
collected by the communication module and finally sent to the mobile device
(steps 8–10). If the mobile device is no longer connected to the server (e.g. the
user has left the library), the retrieval process will fail and the results will be
cancelled (they are still available on the original servers).

Figure 12 shows the interaction protocol of retrieving pending results via a
PC. A user connects her mobile device to a PC via Bluetooth and sends the list
of all visited servers to the PC component (step 2). Now, the user can decide
either to retrieve the results from all the servers or just to select some of them.
An interface on the PC allows the user to connect to the servers and then to
view or download the pending results (steps 3–7).

ToothAgent: A Multi-agent System for Virtual Communities Support 225

Fig. 11. Pending results from the mobile device

Fig. 12. Pending results from PC

4.4 Agents Interaction

As we said, in this first prototype we implemented just one kind of service,
namely the “buy/sell books” service. The multi-agent system has been imple-
mented in JADE (Java Agent DEvelopment framework) [6], FIPA-compliant [7]
framework for multi-agent systems development. The agent interaction includes
two phases: elaboration of user request and agent negotiation.

During the first phase the request of buying/selling a book is elaborated and
detailed. For example, the request of “Buy a textbook on Java for the price from
10 to 20 euros” is incomplete as the exact title is not specified. The personal agent
makes the request more clear exploiting the information about what textbooks
on Java other users were recently interested in and what they have finally bought,
at what prices, etc. Another example of request that needs to be elaborated could

226 V. Bryl, P. Giorgini, and S. Fante

Fig. 13. User request elaboration

be “Buy Thinking in Java for the price less than 10 euros”. It is unlikely that
this request will be satisfied as all copies of Thinking in Java currently available,
or sold so far, cost at least 20 euros. The user has clearly underestimated the
price. In this case we want the personal agent to extend the price range when
starting to search for a copy of the book.

Figure 13 presents the interaction protocol used by agents during the request
elaboration phase. On each platform there is a dedicated agent, called Expert
Agent (EA), which contains the System for Implicit Culture Support (SICS).
After a personal agent receives its user’s request (step 1), it sends it to the
Expert Agent (step 2). On the EA side Observer component of the SICS extracts
data from the request and stores it in the database of observed user behaviors
(step 3). Composer component estimates the real price for the requested book
and/or suggests the title of the book if the input was incomplete (step 4). For the
elaboration process Composer uses the information about the past user actions,
obtained from Observer and analyzed by Inductive module. At the end the user’s
personal agent gets back the elaborated request (step 5), which it will process
during the second phase.

As it was explained in Section 3.5, SICS needs to gather information about
user behavior. In the described prototype to observe the user behavior Expert
Agent extracts data from the requests it gets from personal agents. Two other
additional sources of observations could be added. The first one is the database
where results of agent negotiations are stored. Each time two personal agents
agree on buying/selling a book and send their proposals to the database, Expert
Agents extracts necessary information (e.g. book title and the price) from the
proposals and stores it in its internal database. The second source is the direct
user feedback. When a user views the list of proposals on her mobile device, she
can choose to make a phone call or to send an SMS to the other user whose
contacts are in the proposal. When the proposals are viewed on the PC, the user
can choose to write an e-mail to her potential partner. For the purpose of feed-
back the system records the information about these phone calls/SMSs/e-mails

ToothAgent: A Multi-agent System for Virtual Communities Support 227

Fig. 14. Agent negotiation

assuming that if the other user of the proposal (the potential partner) was con-
tacted then the feedback is positive, otherwise negative. The feedback informa-
tion is sent to the Expert Agent as soon as a user establishes connection with
the corresponding server via her mobile device or a PC.

On the second phase — agent negotiation — the interaction mechanism is
very simple. Figure 14 presents the implemented agent interaction “from the
point of view” of an agent which is buying a book. First, the buyer’s personal
agent broadcasts the request of looking for a specific book (step 1), information
about title, desired price, etc. is specified in the message. If in the platform
there is another agent that is selling the requested book, it responds to the
buyer with the price it wants for the book (step 2). If the price is greater than
the maximum price specified by the buyer, the interaction continues with the
request for discount from the buyer agent (step 3). The seller responds either
with the discounted price or with the initially proposed price (step 4) in case it
does not want to give the discount. If this price is less than maximum price for
the buyer, it accepts the deal (step 5). After that, the buyer and seller personal
agents exchange their users’ data (step 6), form the agreed proposals and send
them to the server database (step 7). The proposals are then forwarded either
to mobile device, or to the PC as described in Section 4.3.

4.5 Andiamo Project

The work presented at AOIS 2006 workshop, was a starting point for Andiamo
project [8,9], which aims at providing users of lightweight devices a Rideshare, or
Carpooling service. Rideshare is a method to reduce the use of cars in a specific
town or area. The scenario is as follows: a car owner uses her car to move from
one place to the other, while another person is interested in going to some point
along the car owner’s way to destination and is willing to share the ride cost with

228 V. Bryl, P. Giorgini, and S. Fante

the car owner. The key motivations behind providing this service is saving the
cost of transportation, reducing the pollution coming out of cars, and avoiding
the formation of traffic jams (and thus, the waste of time). Rideshare constitutes
a reliable means of transportation for many people in an increasing number of
countries, with the matching of requests usually organized through a third party
website. One of the essential drawbacks of web-based Rideshare applications is
the necessity to be always connected to the Internet. Therefore, ease-of-use is
only realized in using mobile based applications.

The architecture of the system developed within Andiamo is obtained by ex-
tending and customizing ToothAgent. It consists of one or more multi-agent
platforms accessible via SMS or GPRS-enabled lightweight devices. On the plat-
form there is an implemented multi-agent system where Personal Agents (PAs) of
car owners and ride seekers interact and negotiate potential rides. When agents
are started on the platform, there are several interaction phases taking place be-
tween them to reach a trip/ride agreement: the involved agents have to contract
on many user’s modifiable parameters, such as the exact departure time, the of-
fered/requested money (contribution for the trip), the departure and the arrival
meeting points, etc. As in ToothAgent, on each platform there is a dedicated
Expert Agent, which contains the System for Implicit Culture Support. In Andi-
amo, the use of the IC framework allows the system to suggest the meeting points
that are frequently used by other system users. An auction mechanism is used
as a method of negotiation among car owners and ride seekers agents. Moreover,
users have the possibility to apply both an autonomous or a semi-autonomous
behavior to their PAs: this implies that the interaction between two agents can
be either interrupted to prompt an inquiry to the user or self-organized. For the
further details the reader is referred to [9].

The system was tested using Nokia 6630, N73, N70, 6600, Motorola v3 and
Sony-Ericsson P910 mobile phones and PC/Server equipped with generic Blue-
tooth adapter. The tests were performed on different scenarios and involved a
number of people, e.g. university students and workers. From these tests, it was
noticed that the time to obtain an agreement between two agents is the same
for every situation. In the cases in which there are more seekers than the seats
offered by the offerers, the agents winning the auction are always the stronger
agents (i.e. the agents that offer more money, that have a higher feedback, etc.).
Currently, the deployment of the system is expected at the University of Trento,
so its performance and usability will be tested on a real-life large scale basis.

5 Conclusions

In this paper we have presented an implemented prototype where multi-agent
systems and Bluetooth wireless communication technology are combined to-
gether to support co-localized communities of users. We have discussed the
general architecture of the system, and presented some implementation issues
related to ToothAgent, the prototype we have built.

ToothAgent: A Multi-agent System for Virtual Communities Support 229

We are currently working with ArsLogica S.p.A. on the Andiamo project,
in which the ToothAgent architecture was extended and customized for the
Rideshare scenario. We expect the system developed within Andiamo to be de-
ployed and tested on a real-life large scale basis in the nearest future. The pre-
liminary tests have already shown the effectiveness of the system in supporting
co-localized community of users.

Acknowledgements

We thank ArsLogica S.p.A. for the collaboration and the support to this project.
This work has been partially funded by EU Commission, through the SENSO-
RIA and SERENITY projects, and also by the Provincial Authority of Trentino,
through the MOSTRO project. We also thank people working on Implicit Cul-
ture, in particular Aliaksandr Birukou and Enrico Blanzieri for their support in
using the Implicit Culture framework. Finally, we thank the reviewers and par-
ticipants of the AOIS 2006 workshop for the valuable comments and suggestions.

References

1. MIA project, http://www.uni-koblenz.de/∼bthomas/MIA HTML
2. The official Bluetooth website, http://www.bluetooth.com/
3. Implicit Culture website, http://dit.unitn.it/∼implicit/
4. Blue Cove project, http://sourceforge.net/projects/bluecove/
5. JSR-82: Java APIs for Bluetooth, http://www.jcp.org/en/jsr/detail?id=82
6. JADE: Java Agent DEvelopment Framework website, http://jade.tilab.com/
7. FIPA: Foundation for Intelligent Physical Agents, http://www.fipa.org/
8. ANDIAMO project, http://dit.unitn.it/blueagents/andiamo/
9. Abdel-Naby, S., Fante, S., Giorgini, P.: Auctions negotiation for mobile rideshare

service. In: ICPCA 2007. Proceeding of the IEEE Second International Conference
on Pervasive Computing and Applications (2007)

10. Birukov, A., Blanzieri, E., Giorgini, P.: Implicit: An agent-based recommendation
system for web search. In: Proceedings of the 4th International Conference on
Autonomous Agents and Multi-Agent Systems, pp. 618–624. ACM Press, New
York (2005)

11. Blanzieri, E., Giorgini, P., Massa, P., Recla, S.: Implicit culture for multi-agent
interaction support. In: CooplS 2001. Proceedings of the 9th International Confer-
ence on Cooperative Information Systems, pp. 27–39. Springer, Heidelberg (2001)

12. Bombara, M., Cal̀ı, D., Santoro, C.: Kore: A multi-agent system to assist museum
visitors. In: WOA 2003. Proceedings of the Workshop on Objects and Agents,
Cagliari, Italy, pp. 175–178 (2003)

13. Bucur, O., Beaune, P., Boissier, O.: Representing context in an agent architecture
for context-based decision making. In: CRR 2005. Proceedings of the Workshop on
Context Representation and Reasoning, Paris, France (2005)

14. Carabelea, C., Berger, M.: Agent negotiation in ad-hoc networks. In: AAMAS
2005. Proceedings of the Ambient Intelligence Workshop at Conference, Utrecht,
The Netherlands, pp. 5–16 (2005)

http://www.uni-koblenz.de/~bthomas/MIA_HTML
http://www.bluetooth.com/
http://dit.unitn.it/~implicit/
http://sourceforge.net/projects/bluecove/
http://www.jcp.org/en/jsr/detail?id=82
http://jade.tilab.com/
http://www.fipa.org/
http://dit.unitn.it/blueagents/andiamo/

230 V. Bryl, P. Giorgini, and S. Fante

15. Carabelea, C., Boissier, O.: Multi-agent platforms on smart devices: Dream or
reality? In: SOC 2003. Proceedings of the Smart Objects Conference, Grenoble,
France, pp. 126–129 (2003)

16. Rakotonirainy, A., Loke, S.W., Zaslavsky, A.: Multi-agent support for open mobile
virtual communities. In: IC-AI 2000. Proceedings of the International Conference
on Artificial Intelligence, Las Vegas, Nevada, USA, vol. I, pp. 127–133 (2000)

17. Vasiu, L., Mahmoud, Q.H.: Mobile agents in wireless devices. Computer 37(2),
104–105 (2004)

Author Index

Achbany, Youssef 143
Adam, Emmanuel 90
Alencar, Fernanda 183
Anli, Abdouroihamane 90
Araújo, João 183

Beydoun, Ghassan 73
Briot, Jean-Pierre 19
Bryl, Volha 212

Castro, Jaelson 183
Chopinaud, Caroline 19
Choren, Ricardo 1, 19

Dignum, Virginia 53

Elamy, Abdel-Halim Hafez 105

Fante, Stefano 212
Far, Behrouz 105
Faulkner, Stéphane 143
Felićıssimo, Carolina 19

Giorgini, Paolo 123, 212
Gonzalez-Perez, Cesar 73
Grislin-Le Strugeon, Emmanuelle 90
Guedes, José de S.P. 37

Huisman, Bob 53

Jarke, Matthias 164

Kolp, Manuel 143

Lakemeyer, Gerhard 164
Low, Graham 73
Lucena, Carlos J.P. de 1, 19, 37

Mari, Marco 202
Mart́ınez, Alicia 123
Mensonides, Maarten 53
Moreira, Ana 183
Mylopoulos, John 123, 183

Pastor, Oscar 123
Poggi, Agostino 202

Ramos, Ricardo 183

Schmitz, Dominik 164
Seghrouchni, Amal El Fallah 19
Silva, Carla 183

Tomaiuolo, Michele 202
Torres da Silva, Viviane 1, 37
Tran, Quynh-Nhu Numi 73
Turci, Paola 202

Wautelet, Yves 143

	Title Page
	Preface
	Organization
	Table of Contents
	Modeling MAS Properties with MAS-ML Dynamic Diagrams
	Introduction
	MAS-ML Extended Sequence Diagram
	Entity Representation
	Interaction Representation
	Internal Execution Representation

	MAS-ML Extended Activity Diagram
	Sample Scenarios
	Modeling MAS Properties
	Goal Orientation
	Interaction
	Social Behavior
	Adaptation
	Distribution
	Mobility
	Concurrent Execution

	Related Work
	Conclusion

	Providing Contextual Norm Information in Open Multi-Agent Systems
	Introduction
	Contextual Norm Information Provision in Open MASs
	Modelling Contextual Norms
	Representing Contextual Norms
	Composing Contextual Norms
	The DynaCROM Implementation

	Case Study
	Examples of Environment, Organization, Role and Interaction Norms
	Representing Our Created World
	Implementation

	Using Contextual Norm Information
	Using DynaCROM Output as an Input for a Norm Enforcement Solution
	Using a Norm Enforcement Solution for Detecting Norm Violation

	Related Work
	Conclusion
	References

	A Reputation Model Based on Testimonies
	Introduction
	Evaluating the Testimonies
	The Reputation Model
	Evaluating Defendants’ Reputation
	Evaluating Witnesses’ Reputation
	Analyzing the Equations for Evaluating Reputations
	Reputation Types
	Combining Agent Reputations

	Case Study: Cargo Consolidation and Transportation
	The Global Reputation of an Agent from the Point of View of a Sub- Organization
	The Global Reputation of Agent from the Point of View the of Main Organization
	The Global Norm Reputation of an Agent

	Related Work
	Conclusions and Future Work
	References

	Towards Agent-Based Scenario Development for Strategic Decision Support
	Introduction
	The OperA Model
	A Methodology for Scenario Modelling
	The NedTrain Situation
	Organizational Model
	Model Validation and Animation
	Related Work on MAS Models
	Conclusions

	Preliminary Validation of MOBMAS (Ontology-Centric Agent Oriented Methodology): Design of a Peer-to-Peer Information Sharing MAS
	Introduction
	MOBMAS Methodology
	Analysis Activity
	MAS Organization Design
	Agent Internal Design
	Agent Interaction Design
	Architecture Design

	Community-Based P2P Information Sharing MAS
	Application Description
	P2P Analysis
	P2P MAS Organization Design
	P2P Agent Internal Design
	P2P MAS Agent Interaction Design

	Discussion, Limitations and Future Work
	References

	A Methodology to Bring MAS to Information Systems
	Introduction
	IS Based on MAS
	Agents Abilities in IMAS
	Software Engineering Approaches of Information Multi-Agent Systems

	A Methodology to Bring MAS to IS
	MAS Adaptation
	Methodology

	Application to an IS Dedicated to Transportation Information
	Conclusion

	On the Evaluation of Agent-Oriented Software Engineering Methodologies: A Statistical Approach
	Introduction
	Research Problem
	Literature Review and Related Works
	Research Questions

	Selecting Methodologies and Participants
	Evaluating the Methodologies
	Identifying Dimensions
	Identifying Attributes
	Identifying Experimental Variables
	Identifying the Scale of Measurement
	Selecting the Appropriate Statistical Model

	Statistical Hypotheses
	Applying the ANOVA Approach
	Dimensional Analyses
	Detailed Analysis of Dimension 1
	Overall Outcome of the Evaluation Process

	Conclusions
	References

	From Early to Late Requirements: A Goal-Based Approach
	Introduction
	Method Overview
	Goal-Based Requirements Elicitation Process
	Late Requirements Generation Process
	Related Work
	Conclusions and Future Work
	References

	A Formal Description Language for Multi-Agent Architectures
	Introduction
	Context
	The BDI Model
	SKwyRL-ADL: An Architecture-Centric Process for MAS Development
	The Need for an Architectural Description Language
	Limitations

	SKwyRL-ADL
	The Behavioural Model
	The Structural Model

	A Data Integration Case Study
	Related Work
	Conclusion
	References

	Comparing Three Formal Analysis Approaches of the Tropos Family
	Introduction
	SNet: A Combination of i* and ConGolog
	An Extended Version of i*
	Mapping the i* Model to a ConGolog Program
	The SNet Environment

	Comparison with Formal Tropos (FT)
	Similarities and Differences Concerning Static Modeling
	Similarities and Differences Concerning Modeling Dynamics
	Similarities and Differences Concerning Analysis

	Comparison with Secure Tropos (ST)
	Similarities and Differences Concerning Modeling
	Similarities and Differences Concerning Analysis

	Ideas on a Combined Use
	Application to Software Requirements Engineering
	Application to Support Inter-organizational Networks

	Conclusion

	Integration of Aspects with i* Models
	Introduction
	Background
	An Overview of Aspect-Orientation
	The i* Framework

	Case Study
	Handling Crosscutting Concerns in i* Models
	Identification and Representation of Candidate Aspects
	Identification of Relationship Among Candidate Aspects
	Composition

	Related Work
	Conclusions and Future Work
	References

	Enhancing Information Sharing Through Agents
	Introduction
	RAIS System
	Searching and Pushing Information
	Security
	Mobile User Support

	RAIS Development Components
	Conclusion
	References

	ToothAgent: A Multi-agent System for Virtual Communities Support
	Introduction
	Motivating Example
	System Architecture
	System Requirements
	System Components
	Getting Access to the Services
	Retrieving Pending Results
	Agent Platform

	Implementation Issues
	Online Registration and Service Selection
	Accessing the Services
	Results Retrieval
	Agents Interaction
	Andiamo Project

	Conclusions

	Author Index

